YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wind-Induced Stability of a Cable-Stayed Bridge with Double Main Spans of 1,500 m and a Twin-Box Section

    Source: Journal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 001
    Author:
    Chuanxin Hu
    ,
    Zhiyong Zhou
    ,
    Kangjian Yan
    DOI: 10.1061/(ASCE)BE.1943-5592.0001501
    Publisher: ASCE
    Abstract: Both aerostatic torsional divergence and flutter are challenging for the wind-resistant performance of long-span cable-stayed bridges. Aiming at a cable-stayed bridge with double main spans of 1,500 m each and a typical twin-box bridge girder, a combination of wind tunnel tests and nonlinear aerostatic analysis was used to investigate the wind-induced stability of the bridge as well as the effects of central grids with 0% installed on the upper surface of the bridge girder for the wind-induced stability of the bridge. Aerostatic torsional divergence was observed both at initial attack angles of +3° and 0° for the twin-box section and the initial attack angle of 0° for the revised section with central grids with 0%, whereas flutter was observed at the initial attack angle of +3°. Therefore, there are clear competitive relationships between aerostatic torsional divergence and flutter for a revised section with central grids with 0%, depending on the initial attack angle. Furthermore, the addition of central grids with 0% led to deteriorated wind-induced stability, including aerostatic torsional divergence and flutter. Then synchronous evolutionary relationships between structural stiffness and displacements in the instability process are presented. It was found that the downstream cable stress at the center node of the main span decreased prior to the twin-box section when central grids with 0% were added, and the upstream cable stress decreased faster than that of the twin-box section, resulting in the deterioration of aerostatic stability at the initial attack angles of +3° and 0°.
    • Download: (1.976Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wind-Induced Stability of a Cable-Stayed Bridge with Double Main Spans of 1,500 m and a Twin-Box Section

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268908
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorChuanxin Hu
    contributor authorZhiyong Zhou
    contributor authorKangjian Yan
    date accessioned2022-01-30T21:49:40Z
    date available2022-01-30T21:49:40Z
    date issued1/1/2020 12:00:00 AM
    identifier other%28ASCE%29BE.1943-5592.0001501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268908
    description abstractBoth aerostatic torsional divergence and flutter are challenging for the wind-resistant performance of long-span cable-stayed bridges. Aiming at a cable-stayed bridge with double main spans of 1,500 m each and a typical twin-box bridge girder, a combination of wind tunnel tests and nonlinear aerostatic analysis was used to investigate the wind-induced stability of the bridge as well as the effects of central grids with 0% installed on the upper surface of the bridge girder for the wind-induced stability of the bridge. Aerostatic torsional divergence was observed both at initial attack angles of +3° and 0° for the twin-box section and the initial attack angle of 0° for the revised section with central grids with 0%, whereas flutter was observed at the initial attack angle of +3°. Therefore, there are clear competitive relationships between aerostatic torsional divergence and flutter for a revised section with central grids with 0%, depending on the initial attack angle. Furthermore, the addition of central grids with 0% led to deteriorated wind-induced stability, including aerostatic torsional divergence and flutter. Then synchronous evolutionary relationships between structural stiffness and displacements in the instability process are presented. It was found that the downstream cable stress at the center node of the main span decreased prior to the twin-box section when central grids with 0% were added, and the upstream cable stress decreased faster than that of the twin-box section, resulting in the deterioration of aerostatic stability at the initial attack angles of +3° and 0°.
    publisherASCE
    titleWind-Induced Stability of a Cable-Stayed Bridge with Double Main Spans of 1,500 m and a Twin-Box Section
    typeJournal Paper
    journal volume25
    journal issue1
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001501
    page17
    treeJournal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian