YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Compaction of Clays: Numerical Study Based on the Mechanics of Unsaturated Soils

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 010
    Author:
    Javad Ghorbani
    ,
    Majidreza Nazem
    ,
    John P. Carter
    DOI: 10.1061/(ASCE)GM.1943-5622.0001840
    Publisher: ASCE
    Abstract: This paper presents a numerical study of the dynamic compaction (DC) process, based on the finite element method, with the main attention on the role of water content on the soil response. Dynamic compaction is one of the most cost-effective techniques available for soil improvement, where the soil is compacted by repeatedly dropping free-falling heavy weights, often using cranes. Despite its simplicity in practice, finding a closed-form solution for the problem is a tedious task. This is because the efficiency of the procedure is dependent on the characteristics of dynamic wave propagation, which is predominantly determined by the soil’s hydromechanical properties. To simplify the problem, the soil has been often modeled as a single-phase material containing no water. The relationship between the compaction efficiency and the soil response has long been investigated experimentally. Despite this knowledge, modeling the moisture content in numerical analyses has been a difficult task due to the strong nonlinearity and challenges imposed by the presence of large deformations (and the associated mesh distortions), inertia effects, soil–structure interaction, spurious reflections of waves from truncated boundaries, and the simultaneous presence of three material phases (solid, gas, and liquid), together with their interactions. In this study, the problem is investigated within the framework of multiphase porous media and unsaturated soil mechanics. Some fundamental observations are revealed in solving this problem, particularly those that cannot be directly measured in practice due to the extreme energy release after the impact. A fully coupled finite element framework developed for immiscible flows is employed for this purpose. To reduce complexity, the dependency of the soil–water characteristic curve on volume changes and its hysteretic response (as shown in the literature)] is ignored. The paper also proposes a generalized version of the viscous boundary for the case of unsaturated soil dynamics and proposes an Arbitrary Lagrangian–Eulerian (ALE) approach to tackle mesh distortion; hence, providing a chance to model the problem at higher applied energies. Using the proposed numerical framework, a parametric study has also been conducted to reveal the role of the soil plasticity parameters in the dynamic compaction problem.
    • Download: (1.404Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Compaction of Clays: Numerical Study Based on the Mechanics of Unsaturated Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268829
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorJavad Ghorbani
    contributor authorMajidreza Nazem
    contributor authorJohn P. Carter
    date accessioned2022-01-30T21:46:58Z
    date available2022-01-30T21:46:58Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29GM.1943-5622.0001840.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268829
    description abstractThis paper presents a numerical study of the dynamic compaction (DC) process, based on the finite element method, with the main attention on the role of water content on the soil response. Dynamic compaction is one of the most cost-effective techniques available for soil improvement, where the soil is compacted by repeatedly dropping free-falling heavy weights, often using cranes. Despite its simplicity in practice, finding a closed-form solution for the problem is a tedious task. This is because the efficiency of the procedure is dependent on the characteristics of dynamic wave propagation, which is predominantly determined by the soil’s hydromechanical properties. To simplify the problem, the soil has been often modeled as a single-phase material containing no water. The relationship between the compaction efficiency and the soil response has long been investigated experimentally. Despite this knowledge, modeling the moisture content in numerical analyses has been a difficult task due to the strong nonlinearity and challenges imposed by the presence of large deformations (and the associated mesh distortions), inertia effects, soil–structure interaction, spurious reflections of waves from truncated boundaries, and the simultaneous presence of three material phases (solid, gas, and liquid), together with their interactions. In this study, the problem is investigated within the framework of multiphase porous media and unsaturated soil mechanics. Some fundamental observations are revealed in solving this problem, particularly those that cannot be directly measured in practice due to the extreme energy release after the impact. A fully coupled finite element framework developed for immiscible flows is employed for this purpose. To reduce complexity, the dependency of the soil–water characteristic curve on volume changes and its hysteretic response (as shown in the literature)] is ignored. The paper also proposes a generalized version of the viscous boundary for the case of unsaturated soil dynamics and proposes an Arbitrary Lagrangian–Eulerian (ALE) approach to tackle mesh distortion; hence, providing a chance to model the problem at higher applied energies. Using the proposed numerical framework, a parametric study has also been conducted to reveal the role of the soil plasticity parameters in the dynamic compaction problem.
    publisherASCE
    titleDynamic Compaction of Clays: Numerical Study Based on the Mechanics of Unsaturated Soils
    typeJournal Paper
    journal volume20
    journal issue10
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001840
    page13
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian