YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Mechanical Behavior of Gneiss Considering the Orientation of Schistosity under True Triaxial Compression

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 011
    Author:
    Xufeng Liu
    ,
    Xia-Ting Feng
    ,
    Yangyi Zhou
    DOI: 10.1061/(ASCE)GM.1943-5622.0001838
    Publisher: ASCE
    Abstract: Rocks with a layered structure (bedding or foliation) usually exhibit different levels of anisotropy in terms of deformation, strength, and failure mode under multiaxial stress conditions. This anisotropy is influenced by the spatial relationship between the internal layered structure and the principal stresses; however, relatively few experimental studies have been conducted due to various limitations, resulting in insufficient knowledge of the failure mechanism of layered rocks. A series of true triaxial compression tests for a gneiss were carried out considering the orientation of schistosity. The results show that the orientation of schistosity has a significant impact on the strength and failure of this gneiss. More specifically, under the same intermediate principal stress σ2, the strength of specimens increases as the angle (ω) between the strike of schistosity and the direction of σ2 increases. The greater the angle ω, the more sensitive the strength varies with σ2. When σ2 is low, the schistosity plane acts as a weak plane to control the failure of the specimen, and the main failure plane is parallel to the schistosity. As σ2 increases, the weakening effect of schistosity decreases, and the influence of σ2 on the failure is enhanced. In this case, the failure of cutting through the rock matrix more commonly occurs, and the failure plane dips toward σ3 and strikes parallel to σ2.
    • Download: (2.256Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Mechanical Behavior of Gneiss Considering the Orientation of Schistosity under True Triaxial Compression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268827
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorXufeng Liu
    contributor authorXia-Ting Feng
    contributor authorYangyi Zhou
    date accessioned2022-01-30T21:46:53Z
    date available2022-01-30T21:46:53Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29GM.1943-5622.0001838.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268827
    description abstractRocks with a layered structure (bedding or foliation) usually exhibit different levels of anisotropy in terms of deformation, strength, and failure mode under multiaxial stress conditions. This anisotropy is influenced by the spatial relationship between the internal layered structure and the principal stresses; however, relatively few experimental studies have been conducted due to various limitations, resulting in insufficient knowledge of the failure mechanism of layered rocks. A series of true triaxial compression tests for a gneiss were carried out considering the orientation of schistosity. The results show that the orientation of schistosity has a significant impact on the strength and failure of this gneiss. More specifically, under the same intermediate principal stress σ2, the strength of specimens increases as the angle (ω) between the strike of schistosity and the direction of σ2 increases. The greater the angle ω, the more sensitive the strength varies with σ2. When σ2 is low, the schistosity plane acts as a weak plane to control the failure of the specimen, and the main failure plane is parallel to the schistosity. As σ2 increases, the weakening effect of schistosity decreases, and the influence of σ2 on the failure is enhanced. In this case, the failure of cutting through the rock matrix more commonly occurs, and the failure plane dips toward σ3 and strikes parallel to σ2.
    publisherASCE
    titleExperimental Study of Mechanical Behavior of Gneiss Considering the Orientation of Schistosity under True Triaxial Compression
    typeJournal Paper
    journal volume20
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001838
    page10
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian