YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Volume Change Behavior of Natural Expansive Soils Subjected to Acid and Alkali Contamination

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 011
    Author:
    Dongxing Wang
    ,
    Yiying Du
    ,
    Leena Korkiala-Tanttu
    ,
    Zengfeng Zhao
    DOI: 10.1061/(ASCE)GM.1943-5622.0001835
    Publisher: ASCE
    Abstract: Acid/alkali contamination of expansive soils, which has been probed in recent years, gives rise to unexpected structural failure when exposed. However, a systematic research aiming at evaluating volumetric behavior of natural illitic clays when subjected to acid/alkali solution as pore fluid and its microlevel analysis is not well established. A series of oedometer tests and microanalytical experiments (X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy) have been carried out to investigate the effects of acid and alkali contamination on swelling and compressibility of natural expansive clays from Heilongjiang province in China and to identify the underlying controlling mechanisms. Distilled water, sulfuric acid of pH 3, and caustic soda of pH 13 were selected as three different pore fluids. The results show that compared to samples inundated with water, specimens exhibit greater swelling and lower compressibility after being exposed to acid solution, and lower swelling and greater compressibility after being subjected to alkali solution. In three different soaking solutions, all samples present an increasing tendency for swelling deformation with dry density from 1.4 to 1.8 g/cm3, while the highest compressibility occurs at dry density around 1.5 g/cm3. The microanalysis revealed that soils undergo reactions, including desiliconization and cation exchange, due to the acid and alkali erosion, which correspondingly leads to changes in soil mineralogy and texture. Acid and alkali contamination results in disintegration and loose structure, and acid exerts more destructive impacts than alkali do. The sulfuric acid promoted the dissolution of tetrahedral cations, while the caustic soda improved the dissolution of octahedral cations.
    • Download: (1.505Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Volume Change Behavior of Natural Expansive Soils Subjected to Acid and Alkali Contamination

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268824
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorDongxing Wang
    contributor authorYiying Du
    contributor authorLeena Korkiala-Tanttu
    contributor authorZengfeng Zhao
    date accessioned2022-01-30T21:46:45Z
    date available2022-01-30T21:46:45Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29GM.1943-5622.0001835.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268824
    description abstractAcid/alkali contamination of expansive soils, which has been probed in recent years, gives rise to unexpected structural failure when exposed. However, a systematic research aiming at evaluating volumetric behavior of natural illitic clays when subjected to acid/alkali solution as pore fluid and its microlevel analysis is not well established. A series of oedometer tests and microanalytical experiments (X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy) have been carried out to investigate the effects of acid and alkali contamination on swelling and compressibility of natural expansive clays from Heilongjiang province in China and to identify the underlying controlling mechanisms. Distilled water, sulfuric acid of pH 3, and caustic soda of pH 13 were selected as three different pore fluids. The results show that compared to samples inundated with water, specimens exhibit greater swelling and lower compressibility after being exposed to acid solution, and lower swelling and greater compressibility after being subjected to alkali solution. In three different soaking solutions, all samples present an increasing tendency for swelling deformation with dry density from 1.4 to 1.8 g/cm3, while the highest compressibility occurs at dry density around 1.5 g/cm3. The microanalysis revealed that soils undergo reactions, including desiliconization and cation exchange, due to the acid and alkali erosion, which correspondingly leads to changes in soil mineralogy and texture. Acid and alkali contamination results in disintegration and loose structure, and acid exerts more destructive impacts than alkali do. The sulfuric acid promoted the dissolution of tetrahedral cations, while the caustic soda improved the dissolution of octahedral cations.
    publisherASCE
    titleVolume Change Behavior of Natural Expansive Soils Subjected to Acid and Alkali Contamination
    typeJournal Paper
    journal volume20
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001835
    page10
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian