YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ocean Bottom Hydrodynamic Pressure due to Vertical Seismic Motion

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 009
    Author:
    Weiyun Chen
    ,
    Guoxing Chen
    ,
    Dongsheng Jeng
    ,
    Lingyu Xu
    DOI: 10.1061/(ASCE)GM.1943-5622.0001802
    Publisher: ASCE
    Abstract: Earthquake-induced hydrodynamic pressure on the ocean floor is a key factor in evaluating the surface disturbance and dynamic response of the seabed under the action of a submarine earthquake. An analytical study considering the compressibility of seawater was carried out to obtain the closed-form solution for the hydrodynamic pressure, which depends on water depth, excitation frequency, and seabed characteristics. The commonly used approximate expression for the hydrodynamic pressure, which neglects the compressibility of seawater and is associated with the dynamic displacement of the seabed surface, is presented and compared with the analytical solution. The results reveal that the formulation neglecting the compressibility of overlying seawater could underestimate the hydrodynamic pressure at the ocean bottom and the induced dynamic responses in a poroelastic seabed. Finally, a modified formula for the seismic-induced hydrodynamic pressure at the ocean bottom interface, which is able to consider the compressibility of seawater, is proposed by incorporating the nondimensionalized frequency.
    • Download: (649.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ocean Bottom Hydrodynamic Pressure due to Vertical Seismic Motion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268790
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWeiyun Chen
    contributor authorGuoxing Chen
    contributor authorDongsheng Jeng
    contributor authorLingyu Xu
    date accessioned2022-01-30T21:45:43Z
    date available2022-01-30T21:45:43Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29GM.1943-5622.0001802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268790
    description abstractEarthquake-induced hydrodynamic pressure on the ocean floor is a key factor in evaluating the surface disturbance and dynamic response of the seabed under the action of a submarine earthquake. An analytical study considering the compressibility of seawater was carried out to obtain the closed-form solution for the hydrodynamic pressure, which depends on water depth, excitation frequency, and seabed characteristics. The commonly used approximate expression for the hydrodynamic pressure, which neglects the compressibility of seawater and is associated with the dynamic displacement of the seabed surface, is presented and compared with the analytical solution. The results reveal that the formulation neglecting the compressibility of overlying seawater could underestimate the hydrodynamic pressure at the ocean bottom and the induced dynamic responses in a poroelastic seabed. Finally, a modified formula for the seismic-induced hydrodynamic pressure at the ocean bottom interface, which is able to consider the compressibility of seawater, is proposed by incorporating the nondimensionalized frequency.
    publisherASCE
    titleOcean Bottom Hydrodynamic Pressure due to Vertical Seismic Motion
    typeJournal Paper
    journal volume20
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001802
    page6
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian