YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coupled Seepage and Stress Model and Experiment Verification for Creep Behavior of Soft Rock

    Source: International Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 009
    Author:
    Cuiying Zhou
    ,
    Lei Yu
    ,
    Fanfan You
    ,
    Zhen Liu
    ,
    Yanhao Liang
    ,
    Lihai Zhang
    DOI: 10.1061/(ASCE)GM.1943-5622.0001774
    Publisher: ASCE
    Abstract: The creep of soft rocks induced by seepage-stress coupling is one of the critical factors that causes the failure of the rock. However, the actual failure mechanisms of soft rocks, particularly during the accelerated creep stage, have not been fully understood so far. Therefore, the purpose of the present study is to develop theoretical models to quantitively investigate the effects of coupled fissure-pore seepage and hydro-mechanical coupling on the damage behavior of soft rocks. The evolution model of coupled fissure-pore seepage in soft rock was developed, and the coupled fissure-pore damage creep model of soft rock was established. The developed models were also validated by performing a series of triaxial experimental tests. The results show that the theoretical prediction agrees with the experimental results reasonably well. In addition, the developed hydro-mechanical coupled damage creep model for soft rocks can reproduce the experimentally observed deformation behavior of soft rocks in three different creep stages (i.e., deceleration creep, constant creep, and accelerated creep), respectively. Furthermore, the developed fracture evolution and pore index model have the capability of capturing the experimentally observed fracture propagation of soft rocks under hydro-mechanical conditions. The developed model could potentially be used as a useful tool for quantitatively analyzing the risks of soft rock disasters.
    • Download: (1.331Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coupled Seepage and Stress Model and Experiment Verification for Creep Behavior of Soft Rock

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268759
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorCuiying Zhou
    contributor authorLei Yu
    contributor authorFanfan You
    contributor authorZhen Liu
    contributor authorYanhao Liang
    contributor authorLihai Zhang
    date accessioned2022-01-30T21:44:33Z
    date available2022-01-30T21:44:33Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29GM.1943-5622.0001774.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268759
    description abstractThe creep of soft rocks induced by seepage-stress coupling is one of the critical factors that causes the failure of the rock. However, the actual failure mechanisms of soft rocks, particularly during the accelerated creep stage, have not been fully understood so far. Therefore, the purpose of the present study is to develop theoretical models to quantitively investigate the effects of coupled fissure-pore seepage and hydro-mechanical coupling on the damage behavior of soft rocks. The evolution model of coupled fissure-pore seepage in soft rock was developed, and the coupled fissure-pore damage creep model of soft rock was established. The developed models were also validated by performing a series of triaxial experimental tests. The results show that the theoretical prediction agrees with the experimental results reasonably well. In addition, the developed hydro-mechanical coupled damage creep model for soft rocks can reproduce the experimentally observed deformation behavior of soft rocks in three different creep stages (i.e., deceleration creep, constant creep, and accelerated creep), respectively. Furthermore, the developed fracture evolution and pore index model have the capability of capturing the experimentally observed fracture propagation of soft rocks under hydro-mechanical conditions. The developed model could potentially be used as a useful tool for quantitatively analyzing the risks of soft rock disasters.
    publisherASCE
    titleCoupled Seepage and Stress Model and Experiment Verification for Creep Behavior of Soft Rock
    typeJournal Paper
    journal volume20
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001774
    page14
    treeInternational Journal of Geomechanics:;2020:;Volume ( 020 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian