YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methodology to Estimate Road Grade Effects on Consumption and Emissions from a Light Commercial Vehicle Running on the WLTC Cycle

    Source: Journal of Energy Engineering:;2020:;Volume ( 146 ):;issue: 005
    Author:
    Alexandros T. Zachiotis
    ,
    Evangelos G. Giakoumis
    DOI: 10.1061/(ASCE)EY.1943-7897.0000694
    Publisher: ASCE
    Abstract: A novel methodology is suggested in this study, with the aim of assessing the impact of the road grade on a vehicle’s performance and emissions. This methodology consists of creating multiple sinusoidal elevation profiles that simulate a vehicle trip between consecutive peaks and valleys with the total net elevation being zero. A light commercial vehicle is considered, powered by a turbocharged diesel engine, and the baseline trip is the worldwide harmonized light-duty vehicles test cycle (WLTC). A detailed engine-mapping approach is used as the basis for the results, with experimentally derived correction coefficients applied to account for engine transient operation. Engine-out NO and soot are the examined pollutants, as well as fuel, energy consumption, and CO2 emissions. Results from this study show that there is a noteworthy increase in emissions, even for a zero net elevation trip, with the magnitude of this increase being proportional to the trip root mean square (RMS) grade. For the engine/vehicle studied, higher RMS grade values (approximately 5%) result in a 3.5% increase in fueling/CO2 emissions, 5.6% increase in NO emissions, and 7.9% increase in soot emissions; on the other hand, lower RMS grade values (approximately 2%) have fueling/CO2 emissions remaining practically unchanged but still showcase a slight increase in NO and soot emissions (1.8% and 2.6%, respectively).
    • Download: (4.283Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methodology to Estimate Road Grade Effects on Consumption and Emissions from a Light Commercial Vehicle Running on the WLTC Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268646
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorAlexandros T. Zachiotis
    contributor authorEvangelos G. Giakoumis
    date accessioned2022-01-30T21:40:33Z
    date available2022-01-30T21:40:33Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29EY.1943-7897.0000694.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268646
    description abstractA novel methodology is suggested in this study, with the aim of assessing the impact of the road grade on a vehicle’s performance and emissions. This methodology consists of creating multiple sinusoidal elevation profiles that simulate a vehicle trip between consecutive peaks and valleys with the total net elevation being zero. A light commercial vehicle is considered, powered by a turbocharged diesel engine, and the baseline trip is the worldwide harmonized light-duty vehicles test cycle (WLTC). A detailed engine-mapping approach is used as the basis for the results, with experimentally derived correction coefficients applied to account for engine transient operation. Engine-out NO and soot are the examined pollutants, as well as fuel, energy consumption, and CO2 emissions. Results from this study show that there is a noteworthy increase in emissions, even for a zero net elevation trip, with the magnitude of this increase being proportional to the trip root mean square (RMS) grade. For the engine/vehicle studied, higher RMS grade values (approximately 5%) result in a 3.5% increase in fueling/CO2 emissions, 5.6% increase in NO emissions, and 7.9% increase in soot emissions; on the other hand, lower RMS grade values (approximately 2%) have fueling/CO2 emissions remaining practically unchanged but still showcase a slight increase in NO and soot emissions (1.8% and 2.6%, respectively).
    publisherASCE
    titleMethodology to Estimate Road Grade Effects on Consumption and Emissions from a Light Commercial Vehicle Running on the WLTC Cycle
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000694
    page15
    treeJournal of Energy Engineering:;2020:;Volume ( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian