YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CFD-Based Framework for Analysis of Soil–Pipeline Interaction in Reconsolidating Liquefied Sand

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Federico Pisanò
    ,
    Massimiliano Cremonesi
    ,
    Francesco Cecinato
    ,
    Gabriele Della Vecchia
    DOI: 10.1061/(ASCE)EM.1943-7889.0001846
    Publisher: ASCE
    Abstract: Submarine buried pipelines interact with shallow soil layers that are often loose and prone to fluidization/liquefaction. Such occurrence is a possible consequence of pore pressure build-up induced by hydrodynamic loading, earthquakes, and/or structural vibrations. When liquefaction is triggered in sand, the soil tends to behave as a viscous solid–fluid mixture of negligible shear strength, possibly unable to constrain pipeline movements. Therefore, pipelines may experience excessive displacement, for instance, in the form of vertical flotation or sinking. To date, there are no well-established methods to predict pipe displacement in the event of liquefaction. To fill such a gap, this work proposes a computational fluid dynamics (CFD) framework enriched with soil mechanics principles. It is shown that the interaction between pipe and liquefied sand can be successfully analyzed via one-phase Bingham fluid modeling of the soil. Postliquefaction enhancement of rheological properties, viscosity, and yield stress can also be accounted for by linking soil–pipe CFD simulations to a separate analysis of the pore pressure dissipation. The proposed approach is thoroughly validated against the results of small-scale pipe flotation and pipe dragging tests from the literature.
    • Download: (1.463Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CFD-Based Framework for Analysis of Soil–Pipeline Interaction in Reconsolidating Liquefied Sand

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268590
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorFederico Pisanò
    contributor authorMassimiliano Cremonesi
    contributor authorFrancesco Cecinato
    contributor authorGabriele Della Vecchia
    date accessioned2022-01-30T21:38:49Z
    date available2022-01-30T21:38:49Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29EM.1943-7889.0001846.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268590
    description abstractSubmarine buried pipelines interact with shallow soil layers that are often loose and prone to fluidization/liquefaction. Such occurrence is a possible consequence of pore pressure build-up induced by hydrodynamic loading, earthquakes, and/or structural vibrations. When liquefaction is triggered in sand, the soil tends to behave as a viscous solid–fluid mixture of negligible shear strength, possibly unable to constrain pipeline movements. Therefore, pipelines may experience excessive displacement, for instance, in the form of vertical flotation or sinking. To date, there are no well-established methods to predict pipe displacement in the event of liquefaction. To fill such a gap, this work proposes a computational fluid dynamics (CFD) framework enriched with soil mechanics principles. It is shown that the interaction between pipe and liquefied sand can be successfully analyzed via one-phase Bingham fluid modeling of the soil. Postliquefaction enhancement of rheological properties, viscosity, and yield stress can also be accounted for by linking soil–pipe CFD simulations to a separate analysis of the pore pressure dissipation. The proposed approach is thoroughly validated against the results of small-scale pipe flotation and pipe dragging tests from the literature.
    publisherASCE
    titleCFD-Based Framework for Analysis of Soil–Pipeline Interaction in Reconsolidating Liquefied Sand
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001846
    page12
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian