YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stability Analysis of Real-Time Hybrid Simulation with Time-Varying Delay through a Delay Decomposition Approach

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Liang Huang
    ,
    Cheng Chen
    ,
    Tong Guo
    ,
    Xiaoshu Gao
    DOI: 10.1061/(ASCE)EM.1943-7889.0001835
    Publisher: ASCE
    Abstract: Stability of real-time hybrid simulation (RTHS) has attracted considerable attention given that actuator delay might destabilize the real-time test, especially when the compensation is not sufficient. Previous research by the authors explored the stability of RTHS with time-varying delay, but the derived stability criteria are relatively conservative due to the application of the Lyapunov-Krasovskii (L-K) theory. For overcoming such defect and pursuing a more accurate stability analysis, this study introduces a delay decomposition approach to reduce the conservatism of matrix inequality with convexity property. For both constant- and time-varying delay systems, the delay decomposition approach performed remarkably in stability analysis. Moreover, with the increase in number of decomposition, this approach can further improve the accuracy of analysis results and reduce its conservatism; however, the computational efforts will rise rapidly. Computational simulation verified the effectiveness of the delay decomposition approach especially for the physical substructure involving a small stiffness ratio.
    • Download: (2.119Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stability Analysis of Real-Time Hybrid Simulation with Time-Varying Delay through a Delay Decomposition Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268578
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorLiang Huang
    contributor authorCheng Chen
    contributor authorTong Guo
    contributor authorXiaoshu Gao
    date accessioned2022-01-30T21:38:27Z
    date available2022-01-30T21:38:27Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29EM.1943-7889.0001835.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268578
    description abstractStability of real-time hybrid simulation (RTHS) has attracted considerable attention given that actuator delay might destabilize the real-time test, especially when the compensation is not sufficient. Previous research by the authors explored the stability of RTHS with time-varying delay, but the derived stability criteria are relatively conservative due to the application of the Lyapunov-Krasovskii (L-K) theory. For overcoming such defect and pursuing a more accurate stability analysis, this study introduces a delay decomposition approach to reduce the conservatism of matrix inequality with convexity property. For both constant- and time-varying delay systems, the delay decomposition approach performed remarkably in stability analysis. Moreover, with the increase in number of decomposition, this approach can further improve the accuracy of analysis results and reduce its conservatism; however, the computational efforts will rise rapidly. Computational simulation verified the effectiveness of the delay decomposition approach especially for the physical substructure involving a small stiffness ratio.
    publisherASCE
    titleStability Analysis of Real-Time Hybrid Simulation with Time-Varying Delay through a Delay Decomposition Approach
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001835
    page13
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian