YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Decomposition Approach for Damage Detection, Localization, and Quantification for a 52-Story Building in Downtown Los Angeles

    Source: Journal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 009
    Author:
    Mohamed H. Abdelbarr
    ,
    Anthony Massari
    ,
    Monica D. Kohler
    ,
    Sami F. Masri
    DOI: 10.1061/(ASCE)EM.1943-7889.0001809
    Publisher: ASCE
    Abstract: Among the most challenging problems in the field of damage detection and condition assessment in large structures is the ability to reliably detect, locate, and quantify relatively small changes in their dynamic response, based on vibration signal analysis. In this study, a substructuring approach, which uses a nonparametric identification method, was applied to simulated damage data from a high-fidelity and validated three-dimensional (3D) finite element model of a 52-story high-rise office building, located in downtown Los Angeles. Results of this study indicate that the approach not only yields identification results that match well-known global (linear) system identification methods, such as NExT/ERA, but it also provides additional benefits that global identification approaches suffer from. These benefits include: (1) enhanced sensitivity to small structural parameter changes, (2) ability to provide location information about the region in the large structure in which damage has occurred, and (3) not assuming that the underlying structure is linear. Thus, the approach is capable of detecting, quantifying, and classifying changes, when they do occur, if the actual building is subjected to strong earthquake ground motion.
    • Download: (2.934Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Decomposition Approach for Damage Detection, Localization, and Quantification for a 52-Story Building in Downtown Los Angeles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268549
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorMohamed H. Abdelbarr
    contributor authorAnthony Massari
    contributor authorMonica D. Kohler
    contributor authorSami F. Masri
    date accessioned2022-01-30T21:37:34Z
    date available2022-01-30T21:37:34Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29EM.1943-7889.0001809.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268549
    description abstractAmong the most challenging problems in the field of damage detection and condition assessment in large structures is the ability to reliably detect, locate, and quantify relatively small changes in their dynamic response, based on vibration signal analysis. In this study, a substructuring approach, which uses a nonparametric identification method, was applied to simulated damage data from a high-fidelity and validated three-dimensional (3D) finite element model of a 52-story high-rise office building, located in downtown Los Angeles. Results of this study indicate that the approach not only yields identification results that match well-known global (linear) system identification methods, such as NExT/ERA, but it also provides additional benefits that global identification approaches suffer from. These benefits include: (1) enhanced sensitivity to small structural parameter changes, (2) ability to provide location information about the region in the large structure in which damage has occurred, and (3) not assuming that the underlying structure is linear. Thus, the approach is capable of detecting, quantifying, and classifying changes, when they do occur, if the actual building is subjected to strong earthquake ground motion.
    publisherASCE
    titleDecomposition Approach for Damage Detection, Localization, and Quantification for a 52-Story Building in Downtown Los Angeles
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001809
    page14
    treeJournal of Engineering Mechanics:;2020:;Volume ( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian