YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Alternative Treatment to Remove Resistant Strains of <i>Vibrio cholerae</i> in Water

    Source: Journal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Isaura Yáñez Noguez
    ,
    María Teresa Orta de Velásquez
    ,
    Karina Atengueño Reyes
    ,
    María Berenit Mendoza Garfias
    DOI: 10.1061/(ASCE)EE.1943-7870.0001795
    Publisher: ASCE
    Abstract: Resistant strains of Vibrio cholerae have the potential to reemerge in aquatic reservoirs where they remain in a viable but not cultivable (VBNC) state, or as a rough variant embedded in an exopolysaccharide matrix, which could survive inadequate disinfection processes. This study investigated the chlorine (Cl2) and ozone (O3) inactivation kinetics for V. cholerae O1 El Tor, VBNC, and rough strains. The effect of both disinfectants was also evaluated at the cellular level using field emission scanning electron microscope (FESEM) micrographs. The Ct (C: concentration; t: contact time) values for Cl2 and O3 were established. Inactivation kinetics (log10 N0/N) confirmed that O3 is the better water treatment to inactivate VBNC and rough strains of V. cholerae. Compared with the smooth strain, resistant strains require a higher Ct of both Cl2 and O3 to inactivate the same percentage of cells. This study could contribute to preventing the spread of cholera through water consumption, mainly in endemic areas and developing countries, particularly when Ct values of smooth strains are applied in the disinfection of drinking water.
    • Download: (580.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Alternative Treatment to Remove Resistant Strains of <i>Vibrio cholerae</i> in Water

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268489
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorIsaura Yáñez Noguez
    contributor authorMaría Teresa Orta de Velásquez
    contributor authorKarina Atengueño Reyes
    contributor authorMaría Berenit Mendoza Garfias
    date accessioned2022-01-30T21:35:35Z
    date available2022-01-30T21:35:35Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29EE.1943-7870.0001795.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268489
    description abstractResistant strains of Vibrio cholerae have the potential to reemerge in aquatic reservoirs where they remain in a viable but not cultivable (VBNC) state, or as a rough variant embedded in an exopolysaccharide matrix, which could survive inadequate disinfection processes. This study investigated the chlorine (Cl2) and ozone (O3) inactivation kinetics for V. cholerae O1 El Tor, VBNC, and rough strains. The effect of both disinfectants was also evaluated at the cellular level using field emission scanning electron microscope (FESEM) micrographs. The Ct (C: concentration; t: contact time) values for Cl2 and O3 were established. Inactivation kinetics (log10 N0/N) confirmed that O3 is the better water treatment to inactivate VBNC and rough strains of V. cholerae. Compared with the smooth strain, resistant strains require a higher Ct of both Cl2 and O3 to inactivate the same percentage of cells. This study could contribute to preventing the spread of cholera through water consumption, mainly in endemic areas and developing countries, particularly when Ct values of smooth strains are applied in the disinfection of drinking water.
    publisherASCE
    titleAlternative Treatment to Remove Resistant Strains of Vibrio cholerae in Water
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001795
    page8
    treeJournal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian