YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pilot-Scale Treatment of Neutral Pharmaceuticals in Municipal Wastewater Using Reverse Osmosis and Ozonation

    Source: Journal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 011
    Author:
    Jordan Hollman
    ,
    Muhammad Faizan Khan
    ,
    John Albino Dominic
    ,
    Gopal Achari
    DOI: 10.1061/(ASCE)EE.1943-7870.0001777
    Publisher: ASCE
    Abstract: Pharmaceutically active compounds (PhACs) reaching surface waters through municipal wastewater are a concern, as existing treatment processes poorly remove them. While significant lab-scale evaluations have been performed on treatment options, full-scale tests are lacking. Presented is an experimental study from a full-scale research facility that is imbedded in a functioning municipal wastewater plant. Reverse osmosis and ozonation were tested as part of an active treatment train using secondary treated effluent from the adjoining facility. Reverse osmosis removed 92.6%, 99.0%, 99.6%, 97.8%, 99.0%, 99.6%, 99.9%, and 99.2% of metformin, cotinine, trimethoprim, caffeine, venlafaxine, carbamazepine, erythromycin, and fluoxetine, respectively. By ozone, sulfamethoxazole, carbamazepine, erythromycin and o-desmethylvenlafaxine were removed by more than 99.9%. Trimethoprim and venlafaxine were removed by more than 95%, with the remaining compounds removed by between 16% and 85%. Results demonstrate the effectiveness of reverse osmosis and ozonation for full-scale treatment.
    • Download: (1.303Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pilot-Scale Treatment of Neutral Pharmaceuticals in Municipal Wastewater Using Reverse Osmosis and Ozonation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268471
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorJordan Hollman
    contributor authorMuhammad Faizan Khan
    contributor authorJohn Albino Dominic
    contributor authorGopal Achari
    date accessioned2022-01-30T21:34:49Z
    date available2022-01-30T21:34:49Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29EE.1943-7870.0001777.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268471
    description abstractPharmaceutically active compounds (PhACs) reaching surface waters through municipal wastewater are a concern, as existing treatment processes poorly remove them. While significant lab-scale evaluations have been performed on treatment options, full-scale tests are lacking. Presented is an experimental study from a full-scale research facility that is imbedded in a functioning municipal wastewater plant. Reverse osmosis and ozonation were tested as part of an active treatment train using secondary treated effluent from the adjoining facility. Reverse osmosis removed 92.6%, 99.0%, 99.6%, 97.8%, 99.0%, 99.6%, 99.9%, and 99.2% of metformin, cotinine, trimethoprim, caffeine, venlafaxine, carbamazepine, erythromycin, and fluoxetine, respectively. By ozone, sulfamethoxazole, carbamazepine, erythromycin and o-desmethylvenlafaxine were removed by more than 99.9%. Trimethoprim and venlafaxine were removed by more than 95%, with the remaining compounds removed by between 16% and 85%. Results demonstrate the effectiveness of reverse osmosis and ozonation for full-scale treatment.
    publisherASCE
    titlePilot-Scale Treatment of Neutral Pharmaceuticals in Municipal Wastewater Using Reverse Osmosis and Ozonation
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001777
    page10
    treeJournal of Environmental Engineering:;2020:;Volume ( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian