YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Noise Reference Signal–Based Denoising Method for EDA Collected by Multimodal Biosensor Wearable in the Field

    Source: Journal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 006
    Author:
    Gaang Lee
    ,
    Byungjoo Choi
    ,
    Houtan Jebelli
    ,
    Changbum Ryan Ahn
    ,
    SangHyun Lee
    DOI: 10.1061/(ASCE)CP.1943-5487.0000927
    Publisher: ASCE
    Abstract: Since people in contemporary society spend most of their time interacting with the built environment, there is a growing need to thoroughly understand the quality of human–built environment interaction to improve quality of life. Recent wearable electrodermal activity (EDA) sensing has shown the potential to meet this need by continuously, less invasively, and less laboriously monitoring individuals’ stress levels as an important dimension of the quality of interaction with the built environment. However, analyzing EDA to detect stress is still challenging due to significant intrinsic and extrinsic noises in EDA collected by a wearable biosensor in the field. Although several denoising methods have been proposed based on differences in signal characteristics between noises and desired EDA signals evoked by sources of interest (e.g., stress), these methods do not address intrinsic respiration noise due to similarities in the signal characteristics of respiration noise and desired EDA signals. To address this issue, the authors propose a denoising method that references simultaneously collected photoplethysmography (PPG) as a respiration noise–correlated signal to attenuate respiration noise as well as extrinsic noises. The performance of the proposed method was compared with advanced benchmark denoising methods using 25 subjects’ stress data collected in the field. As a result, stress metrics calculated from EDA denoised using the proposed method were statistically more valid and reliable than ones from EDA denoised by benchmark denoising methods. Accordingly, machine learning models trained by having the stress metrics as features showed statistically higher accuracy with EDA denoised by the proposed method than by benchmark denoising methods. These results show that the proposed method can improve stress measurement using EDA by attenuating both intrinsic respiration noise and extrinsic noise. The finding contributes to the body of knowledge by demonstrating that intrinsic noise with signal characteristics indistinguishable from desirable signals can be suppressed by referencing another noise-correlated signal effortlessly acquired using multimodal wearable biosensors. This new knowledge will facilitate the application of wearable EDA sensing devices to continuously, less invasively, and less laboriously measure people’s stress in their daily interactions with the built environment. Using wearable-based stress measurement, urban managers can detect and address environmental stressors in the built environment in a more scalable manner, thereby more effectively improving the quality of interaction between humans and the built environment.
    • Download: (999.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Noise Reference Signal–Based Denoising Method for EDA Collected by Multimodal Biosensor Wearable in the Field

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268394
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorGaang Lee
    contributor authorByungjoo Choi
    contributor authorHoutan Jebelli
    contributor authorChangbum Ryan Ahn
    contributor authorSangHyun Lee
    date accessioned2022-01-30T21:32:38Z
    date available2022-01-30T21:32:38Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29CP.1943-5487.0000927.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268394
    description abstractSince people in contemporary society spend most of their time interacting with the built environment, there is a growing need to thoroughly understand the quality of human–built environment interaction to improve quality of life. Recent wearable electrodermal activity (EDA) sensing has shown the potential to meet this need by continuously, less invasively, and less laboriously monitoring individuals’ stress levels as an important dimension of the quality of interaction with the built environment. However, analyzing EDA to detect stress is still challenging due to significant intrinsic and extrinsic noises in EDA collected by a wearable biosensor in the field. Although several denoising methods have been proposed based on differences in signal characteristics between noises and desired EDA signals evoked by sources of interest (e.g., stress), these methods do not address intrinsic respiration noise due to similarities in the signal characteristics of respiration noise and desired EDA signals. To address this issue, the authors propose a denoising method that references simultaneously collected photoplethysmography (PPG) as a respiration noise–correlated signal to attenuate respiration noise as well as extrinsic noises. The performance of the proposed method was compared with advanced benchmark denoising methods using 25 subjects’ stress data collected in the field. As a result, stress metrics calculated from EDA denoised using the proposed method were statistically more valid and reliable than ones from EDA denoised by benchmark denoising methods. Accordingly, machine learning models trained by having the stress metrics as features showed statistically higher accuracy with EDA denoised by the proposed method than by benchmark denoising methods. These results show that the proposed method can improve stress measurement using EDA by attenuating both intrinsic respiration noise and extrinsic noise. The finding contributes to the body of knowledge by demonstrating that intrinsic noise with signal characteristics indistinguishable from desirable signals can be suppressed by referencing another noise-correlated signal effortlessly acquired using multimodal wearable biosensors. This new knowledge will facilitate the application of wearable EDA sensing devices to continuously, less invasively, and less laboriously measure people’s stress in their daily interactions with the built environment. Using wearable-based stress measurement, urban managers can detect and address environmental stressors in the built environment in a more scalable manner, thereby more effectively improving the quality of interaction between humans and the built environment.
    publisherASCE
    titleNoise Reference Signal–Based Denoising Method for EDA Collected by Multimodal Biosensor Wearable in the Field
    typeJournal Paper
    journal volume34
    journal issue6
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000927
    page13
    treeJournal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian