YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advanced Sound Classifiers and Performance Analyses for Accurate Audio-Based Construction Project Monitoring

    Source: Journal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 005
    Author:
    Yong-Cheol Lee
    ,
    Michele Scarpiniti
    ,
    Aurelio Uncini
    DOI: 10.1061/(ASCE)CP.1943-5487.0000911
    Publisher: ASCE
    Abstract: The sounds of work activities and equipment operations at a construction site provide critical information regarding construction progress, task performance, and safety issues. The construction industry, however, has not investigated the value of sound data and their applications, which would offer an advanced approach to unmanned management and remote monitoring of construction processes and activities. For analyzing sounds emanating from construction work activities and equipment operations, which generally have complex characteristics that entail overlapping construction and environmental noise, a highly accurate sound classifier is imperative for data analysis. To establish the robust foundation for sound recognition, analysis, and monitoring frameworks, this research study examines diverse classifiers and selects those that accurately identify construction sounds. Employing nine types of sounds from about 100 sound data originating from construction work activities, we assess the accuracy of 17 classifiers and find that sounds can be classified with 93.16% accuracy. A comparison with deep learning technology has been also provided, obtaining results similar to the best ones of the traditional machine learning methods. The outcomes of this study are expected to help enhance advanced processes for audio-based construction monitoring and safety surveillance by providing appropriate classifiers for construction sound data analyses.
    • Download: (792.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advanced Sound Classifiers and Performance Analyses for Accurate Audio-Based Construction Project Monitoring

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268376
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorYong-Cheol Lee
    contributor authorMichele Scarpiniti
    contributor authorAurelio Uncini
    date accessioned2022-01-30T21:32:07Z
    date available2022-01-30T21:32:07Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29CP.1943-5487.0000911.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268376
    description abstractThe sounds of work activities and equipment operations at a construction site provide critical information regarding construction progress, task performance, and safety issues. The construction industry, however, has not investigated the value of sound data and their applications, which would offer an advanced approach to unmanned management and remote monitoring of construction processes and activities. For analyzing sounds emanating from construction work activities and equipment operations, which generally have complex characteristics that entail overlapping construction and environmental noise, a highly accurate sound classifier is imperative for data analysis. To establish the robust foundation for sound recognition, analysis, and monitoring frameworks, this research study examines diverse classifiers and selects those that accurately identify construction sounds. Employing nine types of sounds from about 100 sound data originating from construction work activities, we assess the accuracy of 17 classifiers and find that sounds can be classified with 93.16% accuracy. A comparison with deep learning technology has been also provided, obtaining results similar to the best ones of the traditional machine learning methods. The outcomes of this study are expected to help enhance advanced processes for audio-based construction monitoring and safety surveillance by providing appropriate classifiers for construction sound data analyses.
    publisherASCE
    titleAdvanced Sound Classifiers and Performance Analyses for Accurate Audio-Based Construction Project Monitoring
    typeJournal Paper
    journal volume34
    journal issue5
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000911
    page11
    treeJournal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian