YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deep Learning–Based Enhancement of Motion Blurred UAV Concrete Crack Images

    Source: Journal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 005
    Author:
    Yiqing Liu
    ,
    Justin K. W. Yeoh
    ,
    David K. H. Chua
    DOI: 10.1061/(ASCE)CP.1943-5487.0000907
    Publisher: ASCE
    Abstract: Building façade inspection and maintenance needs to be carried out periodically, and the detection of cracks is a core component of the inspection process. The current inspection procedure is labor-intensive and time-consuming and poses significant safety issues like falling from height. Unmanned aerial vehicles (UAVs) with computer vision techniques represent a promising approach for visual crack inspection on high-rise building façades. One research challenge to achieving automated visual crack inspection is image degradation in the form of motion blur caused by UAVs during image acquisition. Motion blur arises due to excessive vibrations of the UAV platform, and this may adversely affect crack detection. In this paper, a deep learning–based deblurring model based on a generative adversarial network (GAN) is proposed to address this challenge. Further, by recognizing a strong correlation between blurred and sharpened crack images, the idea of using a localized skip connection is introduced. Experimental validation of the proposed deblurring model is carried out by investigating the impact of skip connections on deblurring. The proposed model is also compared against the state-of-the-art deblurring model, and results indicate that the proposed model is able to achieve significant improvements in deblurring performance in terms of both global structure and feature details in crack images.
    • Download: (3.016Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deep Learning–Based Enhancement of Motion Blurred UAV Concrete Crack Images

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268371
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorYiqing Liu
    contributor authorJustin K. W. Yeoh
    contributor authorDavid K. H. Chua
    date accessioned2022-01-30T21:31:56Z
    date available2022-01-30T21:31:56Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29CP.1943-5487.0000907.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268371
    description abstractBuilding façade inspection and maintenance needs to be carried out periodically, and the detection of cracks is a core component of the inspection process. The current inspection procedure is labor-intensive and time-consuming and poses significant safety issues like falling from height. Unmanned aerial vehicles (UAVs) with computer vision techniques represent a promising approach for visual crack inspection on high-rise building façades. One research challenge to achieving automated visual crack inspection is image degradation in the form of motion blur caused by UAVs during image acquisition. Motion blur arises due to excessive vibrations of the UAV platform, and this may adversely affect crack detection. In this paper, a deep learning–based deblurring model based on a generative adversarial network (GAN) is proposed to address this challenge. Further, by recognizing a strong correlation between blurred and sharpened crack images, the idea of using a localized skip connection is introduced. Experimental validation of the proposed deblurring model is carried out by investigating the impact of skip connections on deblurring. The proposed model is also compared against the state-of-the-art deblurring model, and results indicate that the proposed model is able to achieve significant improvements in deblurring performance in terms of both global structure and feature details in crack images.
    publisherASCE
    titleDeep Learning–Based Enhancement of Motion Blurred UAV Concrete Crack Images
    typeJournal Paper
    journal volume34
    journal issue5
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000907
    page14
    treeJournal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian