YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimizing Speedup Performance of Computational Hydrodynamic Simulations with UPC Programming Model

    Source: Journal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 002
    Author:
    Alvin Wei Ze Chew
    ,
    Adrian Wing-Keung Law
    ,
    Tung Thanh Vu
    DOI: 10.1061/(ASCE)CP.1943-5487.0000876
    Publisher: ASCE
    Abstract: In this study, we exploit the advantages of Berkeley’s Unified Parallel C (UPC) programming model to optimize the speedup performance of computational hydrodynamic (CHD) simulations, which constitute an important class of modelling tool for hydraulic engineering applications. A two-dimensional (2D) numerical model, termed UPC-CHD, is developed using the conservative forms of the Navier-Stokes (NS) continuity, momentum, and energy equations for viscous, incompressible, and adiabatic flow cases with the UPC model. The following numerical schemes are adopted for discretization in UPC-CHD: (1) a 2-step Lax-Wendroff explicit scheme for the temporal term; (2) a Roe linear approximation with a 3rd-order upwind biased algorithm for the convective fluxes; and (3) a central-differencing scheme for the viscous fluxes. The obtained speedup results demonstrate that UPC-CHD with the affinity principle achieves good speedup performance when compared to the serial algorithm, with an average value of 0.8 per unit core (thread) until 100 processor cores when simulating the Couette, Blasius boundary layer, and Poiseuille flows on a 2D domain of 100 million grids. Finally, we also investigate the effects of varying domain size on the speedup performances of UPC-CHD for the same flow conditions.
    • Download: (598.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimizing Speedup Performance of Computational Hydrodynamic Simulations with UPC Programming Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268366
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorAlvin Wei Ze Chew
    contributor authorAdrian Wing-Keung Law
    contributor authorTung Thanh Vu
    date accessioned2022-01-30T21:31:48Z
    date available2022-01-30T21:31:48Z
    date issued3/1/2020 12:00:00 AM
    identifier other%28ASCE%29CP.1943-5487.0000876.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268366
    description abstractIn this study, we exploit the advantages of Berkeley’s Unified Parallel C (UPC) programming model to optimize the speedup performance of computational hydrodynamic (CHD) simulations, which constitute an important class of modelling tool for hydraulic engineering applications. A two-dimensional (2D) numerical model, termed UPC-CHD, is developed using the conservative forms of the Navier-Stokes (NS) continuity, momentum, and energy equations for viscous, incompressible, and adiabatic flow cases with the UPC model. The following numerical schemes are adopted for discretization in UPC-CHD: (1) a 2-step Lax-Wendroff explicit scheme for the temporal term; (2) a Roe linear approximation with a 3rd-order upwind biased algorithm for the convective fluxes; and (3) a central-differencing scheme for the viscous fluxes. The obtained speedup results demonstrate that UPC-CHD with the affinity principle achieves good speedup performance when compared to the serial algorithm, with an average value of 0.8 per unit core (thread) until 100 processor cores when simulating the Couette, Blasius boundary layer, and Poiseuille flows on a 2D domain of 100 million grids. Finally, we also investigate the effects of varying domain size on the speedup performances of UPC-CHD for the same flow conditions.
    publisherASCE
    titleOptimizing Speedup Performance of Computational Hydrodynamic Simulations with UPC Programming Model
    typeJournal Paper
    journal volume34
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000876
    page5
    treeJournal of Computing in Civil Engineering:;2020:;Volume ( 034 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian