YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Sewer Pipe Data Random Generation and Validation

    Source: Journal of Construction Engineering and Management:;2020:;Volume ( 146 ):;issue: 012
    Author:
    Xianfei Yin
    ,
    Ahmed Bouferguene
    ,
    Mohamed Al-Hussein
    DOI: 10.1061/(ASCE)CO.1943-7862.0001937
    Publisher: ASCE
    Abstract: Sewer pipe systems are of great importance to modern cities in various ways, making preventive maintenance a necessary activity to ensure an acceptable level of service at all times. In this respect, closed-circuit television (CCTV) inspection data for sewer pipe systems serve as the basis for preventive maintenance in the context of sewer pipe condition ratings, maintenance schedule planning, and other similar ideas. Defects (i.e., those classified as either cracks, fractures, roots, deposits, broken, or holes) and construction features (i.e., taps) are the targets of the CCTV inspection process, which is used to mark and record the defects and features in the inspection database for the purpose of developing maintenance strategies. In considering sewer pipe maintenance operations in practical terms, the following CCTV inspection data for sewer pipes are of particular interest to this research: length of the pipes, defect interval, and defect sequence for different types of defects (and taps). However, the data collection process using CCTV inspections is typically expensive and time-consuming from the perspective of the municipal department. In this context, an input modeling technique that aims to exploit the potential value of historical data is proposed by combining the Markov chain model with distribution fitting techniques and other relevant methods. The generated dataset goes through a rigorous validation process that includes statistical analysis and comparison, cluster analysis and comparison, and distance-based similarity comparison. The whole process proves that the randomly generated dataset is reasonable since it expresses similar characteristics to the original dataset in many aspects. Overall, the research proposes an input modeling process that could generate human-made sewer pipe inspection data that inherent the major characteristic of the real-life data. The generated data could benefit the real-life practice in various ways, especially in the context of data deficiency.
    • Download: (1.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Sewer Pipe Data Random Generation and Validation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268350
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorXianfei Yin
    contributor authorAhmed Bouferguene
    contributor authorMohamed Al-Hussein
    date accessioned2022-01-30T21:31:21Z
    date available2022-01-30T21:31:21Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29CO.1943-7862.0001937.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268350
    description abstractSewer pipe systems are of great importance to modern cities in various ways, making preventive maintenance a necessary activity to ensure an acceptable level of service at all times. In this respect, closed-circuit television (CCTV) inspection data for sewer pipe systems serve as the basis for preventive maintenance in the context of sewer pipe condition ratings, maintenance schedule planning, and other similar ideas. Defects (i.e., those classified as either cracks, fractures, roots, deposits, broken, or holes) and construction features (i.e., taps) are the targets of the CCTV inspection process, which is used to mark and record the defects and features in the inspection database for the purpose of developing maintenance strategies. In considering sewer pipe maintenance operations in practical terms, the following CCTV inspection data for sewer pipes are of particular interest to this research: length of the pipes, defect interval, and defect sequence for different types of defects (and taps). However, the data collection process using CCTV inspections is typically expensive and time-consuming from the perspective of the municipal department. In this context, an input modeling technique that aims to exploit the potential value of historical data is proposed by combining the Markov chain model with distribution fitting techniques and other relevant methods. The generated dataset goes through a rigorous validation process that includes statistical analysis and comparison, cluster analysis and comparison, and distance-based similarity comparison. The whole process proves that the randomly generated dataset is reasonable since it expresses similar characteristics to the original dataset in many aspects. Overall, the research proposes an input modeling process that could generate human-made sewer pipe inspection data that inherent the major characteristic of the real-life data. The generated data could benefit the real-life practice in various ways, especially in the context of data deficiency.
    publisherASCE
    titleData-Driven Sewer Pipe Data Random Generation and Validation
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001937
    page14
    treeJournal of Construction Engineering and Management:;2020:;Volume ( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian