YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Architectural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of the Glass Failure Prediction Model to Flat Odd-Shaped Glass Using Finite-Element Modeling

    Source: Journal of Architectural Engineering:;2020:;Volume ( 026 ):;issue: 004
    Author:
    James G. Soules
    ,
    Stephen M. Morse
    ,
    H. Scott Norville
    DOI: 10.1061/(ASCE)AE.1943-5568.0000437
    Publisher: ASCE
    Abstract: Model building codes and standards in the United States find their bases in a probabilistic model of glass load resistance (LR). In general, architectural flat glass design predicated on these model building codes and standards is restricted to rectangular glass lites continuously supported along one, two, three, or four sides. When a design professional wishes to use glass with an odd shape (i.e., a nonrectangular shape), design procedures in the model building codes and standards regress to a maximum stress approach. A maximum stress approach to design represents a much different philosophy than does the probabilistic approach. When compared to the probabilistic approach, designs based upon a value of maximum allowable stress may result in much less efficient design. Therefore, the need exists for a design approach for odd-shaped glass lites that has a probabilistic basis for glass load resistance. The primary analysis tools available to engineers today are based on the finite-element method and can be applied to a wide range of different glass lite geometries. The authors developed a nonlinear finite-element model and applied the glass failure prediction model (GFPM) to the nonlinear finite-element model output to determine probability of breakage for combinations of selected flat odd-shaped glass lite geometries and loads. The authors compared the LR of the odd-shaped glass lites to the LR of flat glass lites with the LR of rectangular glass lites having the smallest dimensions so that they would encompass the odd-shaped lites. The authors also compared the maximum principal stresses determined for the flat odd-shaped glass lites (loaded with a pressure equal to the LR of the flat odd-shaped glass lites) from the nonlinear finite-element model to recommended values of maximum allowable stress from model building codes and standards.
    • Download: (646.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of the Glass Failure Prediction Model to Flat Odd-Shaped Glass Using Finite-Element Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268309
    Collections
    • Journal of Architectural Engineering

    Show full item record

    contributor authorJames G. Soules
    contributor authorStephen M. Morse
    contributor authorH. Scott Norville
    date accessioned2022-01-30T21:29:49Z
    date available2022-01-30T21:29:49Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29AE.1943-5568.0000437.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268309
    description abstractModel building codes and standards in the United States find their bases in a probabilistic model of glass load resistance (LR). In general, architectural flat glass design predicated on these model building codes and standards is restricted to rectangular glass lites continuously supported along one, two, three, or four sides. When a design professional wishes to use glass with an odd shape (i.e., a nonrectangular shape), design procedures in the model building codes and standards regress to a maximum stress approach. A maximum stress approach to design represents a much different philosophy than does the probabilistic approach. When compared to the probabilistic approach, designs based upon a value of maximum allowable stress may result in much less efficient design. Therefore, the need exists for a design approach for odd-shaped glass lites that has a probabilistic basis for glass load resistance. The primary analysis tools available to engineers today are based on the finite-element method and can be applied to a wide range of different glass lite geometries. The authors developed a nonlinear finite-element model and applied the glass failure prediction model (GFPM) to the nonlinear finite-element model output to determine probability of breakage for combinations of selected flat odd-shaped glass lite geometries and loads. The authors compared the LR of the odd-shaped glass lites to the LR of flat glass lites with the LR of rectangular glass lites having the smallest dimensions so that they would encompass the odd-shaped lites. The authors also compared the maximum principal stresses determined for the flat odd-shaped glass lites (loaded with a pressure equal to the LR of the flat odd-shaped glass lites) from the nonlinear finite-element model to recommended values of maximum allowable stress from model building codes and standards.
    publisherASCE
    titleApplication of the Glass Failure Prediction Model to Flat Odd-Shaped Glass Using Finite-Element Modeling
    typeJournal Paper
    journal volume26
    journal issue4
    journal titleJournal of Architectural Engineering
    identifier doi10.1061/(ASCE)AE.1943-5568.0000437
    page6
    treeJournal of Architectural Engineering:;2020:;Volume ( 026 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian