YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Framework for Modeling Productivity of Closed-Circuit Television Recording Process for Sewer Pipes

    Source: Journal of Construction Engineering and Management:;2020:;Volume ( 146 ):;issue: 008
    Author:
    Xianfei Yin
    ,
    Yuan Chen
    ,
    Ahmed Bouferguene
    ,
    Hamid Zaman
    ,
    Mohamed Al-Hussein
    ,
    Randy Russell
    DOI: 10.1061/(ASCE)CO.1943-7862.0001885
    Publisher: ASCE
    Abstract: Closed-circuit television (CCTV) is widely used in North America for sewer pipe inspection due to several benefits, such as easy operation and lower upfront costs. To be useful, video footage needs to be collected according to specific standards, which makes the video recording process a time-consuming operation, especially when pipes have operational issues like debris or tree roots. As a result, because city managers are usually limited by the available budget, a good understanding of the overall requirements for CCTV sewer pipe inspection is necessary for efficient resource planning. In this respect, a framework is proposed to model the productivity of the CCTV video recording process by predicting the duration of the recording process based on selected variables. In order to predict the CCTV recording duration, a type of machine learning algorithm and a linear regression model are developed. To be more specific, the random sample consensus (RANSAC) algorithm has been used to extract the benchmark for the CCTV recording process. This algorithm is adopted to screen the data automatically, arriving at a function of the CCTV recording time with two variables (i.e., the total length of the pipe segment and the number of taps in the pipe). As a result, the original dataset that records the CCTV collection process is segmented into three parts: benchmark dataset and two types of outlier datasets. Subsequently, two linear regression models are developed on the outliers to predict the recording duration. Finally, all the developed models are integrated into a simulation model to mimic the recording duration components. The framework is validated by historical data. For the convenience of implementation of the model, the parameters within the model are adjustable to adapt to different situations (such as different seasons, regions, and countries). The contribution of the research lies in two-folds: (1) the CCTV recording process is thoroughly investigated and well-understood, which provides a decision-making basis for the future CCTV collection process; and (2) the proposed simulation model development procedure can be applied to other studies that require data segmentation operation to improve the performance of the simulation model.
    • Download: (3.680Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Framework for Modeling Productivity of Closed-Circuit Television Recording Process for Sewer Pipes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268296
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorXianfei Yin
    contributor authorYuan Chen
    contributor authorAhmed Bouferguene
    contributor authorHamid Zaman
    contributor authorMohamed Al-Hussein
    contributor authorRandy Russell
    date accessioned2022-01-30T21:29:19Z
    date available2022-01-30T21:29:19Z
    date issued8/1/2020 12:00:00 AM
    identifier other%28ASCE%29CO.1943-7862.0001885.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268296
    description abstractClosed-circuit television (CCTV) is widely used in North America for sewer pipe inspection due to several benefits, such as easy operation and lower upfront costs. To be useful, video footage needs to be collected according to specific standards, which makes the video recording process a time-consuming operation, especially when pipes have operational issues like debris or tree roots. As a result, because city managers are usually limited by the available budget, a good understanding of the overall requirements for CCTV sewer pipe inspection is necessary for efficient resource planning. In this respect, a framework is proposed to model the productivity of the CCTV video recording process by predicting the duration of the recording process based on selected variables. In order to predict the CCTV recording duration, a type of machine learning algorithm and a linear regression model are developed. To be more specific, the random sample consensus (RANSAC) algorithm has been used to extract the benchmark for the CCTV recording process. This algorithm is adopted to screen the data automatically, arriving at a function of the CCTV recording time with two variables (i.e., the total length of the pipe segment and the number of taps in the pipe). As a result, the original dataset that records the CCTV collection process is segmented into three parts: benchmark dataset and two types of outlier datasets. Subsequently, two linear regression models are developed on the outliers to predict the recording duration. Finally, all the developed models are integrated into a simulation model to mimic the recording duration components. The framework is validated by historical data. For the convenience of implementation of the model, the parameters within the model are adjustable to adapt to different situations (such as different seasons, regions, and countries). The contribution of the research lies in two-folds: (1) the CCTV recording process is thoroughly investigated and well-understood, which provides a decision-making basis for the future CCTV collection process; and (2) the proposed simulation model development procedure can be applied to other studies that require data segmentation operation to improve the performance of the simulation model.
    publisherASCE
    titleData-Driven Framework for Modeling Productivity of Closed-Circuit Television Recording Process for Sewer Pipes
    typeJournal Paper
    journal volume146
    journal issue8
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001885
    page18
    treeJournal of Construction Engineering and Management:;2020:;Volume ( 146 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian