YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Modeling of Shallow Buried Tunnel Subject to Surface Blast Loading

    Source: Journal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 006
    Author:
    Jagriti Mandal
    ,
    A. K. Agarwal
    ,
    M. D. Goel
    DOI: 10.1061/(ASCE)CF.1943-5509.0001518
    Publisher: ASCE
    Abstract: Dynamic response of shallow buried tunnel with three different cross sections subjected to surface blast loading using LS-DYNA version R10.1.0 is investigated. Multimaterial arbitrary Lagrangian Eulerian (MM-ALE) is employed for this study. Strain softening of concrete is incorporated in terms of tensile cracking. Whereas, strain rate dependent behavior of reinforcement is defined using visco-plastic formulation. The main objective is to investigate the nonlinear behavior of reinforced concrete that constitutes the tunnel lining under a surface blast. Extensive parametric analysis has been performed to determine the effects of change in explosive charge weight, lining thickness, and cover depth on the behavior of tunnel under blast loading. Further, a comparative study based on the degree of blast resistance has been carried out considering three tunnel cross sections, namely, horseshoe, box, and circular. Finally, the blast damage assessment of tunnel with varying geometry, explosive charge weight, and cover depth has been investigated to arrive at the most vulnerable blast scenario.
    • Download: (2.612Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Modeling of Shallow Buried Tunnel Subject to Surface Blast Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268248
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorJagriti Mandal
    contributor authorA. K. Agarwal
    contributor authorM. D. Goel
    date accessioned2022-01-30T21:27:58Z
    date available2022-01-30T21:27:58Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29CF.1943-5509.0001518.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268248
    description abstractDynamic response of shallow buried tunnel with three different cross sections subjected to surface blast loading using LS-DYNA version R10.1.0 is investigated. Multimaterial arbitrary Lagrangian Eulerian (MM-ALE) is employed for this study. Strain softening of concrete is incorporated in terms of tensile cracking. Whereas, strain rate dependent behavior of reinforcement is defined using visco-plastic formulation. The main objective is to investigate the nonlinear behavior of reinforced concrete that constitutes the tunnel lining under a surface blast. Extensive parametric analysis has been performed to determine the effects of change in explosive charge weight, lining thickness, and cover depth on the behavior of tunnel under blast loading. Further, a comparative study based on the degree of blast resistance has been carried out considering three tunnel cross sections, namely, horseshoe, box, and circular. Finally, the blast damage assessment of tunnel with varying geometry, explosive charge weight, and cover depth has been investigated to arrive at the most vulnerable blast scenario.
    publisherASCE
    titleNumerical Modeling of Shallow Buried Tunnel Subject to Surface Blast Loading
    typeJournal Paper
    journal volume34
    journal issue6
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0001518
    page11
    treeJournal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian