YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diagnostic Load Testing for Improved Accuracy of Bridge Load Rating

    Source: Journal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 005
    Author:
    Ryan J. Sherman
    ,
    Matthew H. Hebdon
    ,
    Jason B. Lloyd
    DOI: 10.1061/(ASCE)CF.1943-5509.0001483
    Publisher: ASCE
    Abstract: Bridge load rating provides a standardized procedure to determine the safe load-carrying capacity of a bridge, thereby allowing engineers to establish posting and permitting requirements. The structural condition of components, material properties, loads, and traffic conditions all contribute to the load rating, which describes the capacity of the controlling component of the structure. The primary purpose of bridge load rating is to ensure public safety. The bridge industry has permitted nondestructive load testing, at the discretion of the owner, to establish the safe load-carrying capacity of a given bridge when coupled with analysis and sound engineering judgment. The direct measure of structural response through diagnostic live load testing is viewed as a more accurate method of determining capacity and requires minimal assumptions regarding load distribution. Diagnostic live load testing often results in higher loading postings when compared to traditional analysis because of the elimination of conservative assumptions. A number of data acquisition (DAQ) systems are available for implementation in the load rating process. When correctly implemented, the systems provide an improved understanding of the live load response. Furthermore, deferring repair or replacement through diagnostic load testing can deliver immediate and long-term cost savings. As such, implementation of a diagnostic load testing program may have significant short- and long-term paybacks for both bridge owners and users. The current study employed three DAQ systems to demonstrate how diagnostic load testing can be used to augment traditional load rating procedures. The study revealed that diagnostic load testing of a rural, simple-span steel girder bridge resulted in an improved load rating of 273%, refining the test truck inventory rating from 1.5 to 4.1. Similarly, diagnostic load testing of a rural, simple-span steel pony truss bridge resulted in an improved load rating of 170%, going from a test truck inventory rating of 4.5 to 7.6. Analysis of the field-collected data demonstrated the improved ratings were attributable to a number of factors not considered during traditional load rating, such as site-specific factors and contribution of nonstructural components as well as a true measure of the dynamic amplification, load distribution, and composite action. The positive results showcase the possible improvement to load rating by using diagnostic load testing as compared to traditional load rating procedures, leading to a safer bridge inventory.
    • Download: (3.637Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diagnostic Load Testing for Improved Accuracy of Bridge Load Rating

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268215
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorRyan J. Sherman
    contributor authorMatthew H. Hebdon
    contributor authorJason B. Lloyd
    date accessioned2022-01-30T21:26:55Z
    date available2022-01-30T21:26:55Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29CF.1943-5509.0001483.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268215
    description abstractBridge load rating provides a standardized procedure to determine the safe load-carrying capacity of a bridge, thereby allowing engineers to establish posting and permitting requirements. The structural condition of components, material properties, loads, and traffic conditions all contribute to the load rating, which describes the capacity of the controlling component of the structure. The primary purpose of bridge load rating is to ensure public safety. The bridge industry has permitted nondestructive load testing, at the discretion of the owner, to establish the safe load-carrying capacity of a given bridge when coupled with analysis and sound engineering judgment. The direct measure of structural response through diagnostic live load testing is viewed as a more accurate method of determining capacity and requires minimal assumptions regarding load distribution. Diagnostic live load testing often results in higher loading postings when compared to traditional analysis because of the elimination of conservative assumptions. A number of data acquisition (DAQ) systems are available for implementation in the load rating process. When correctly implemented, the systems provide an improved understanding of the live load response. Furthermore, deferring repair or replacement through diagnostic load testing can deliver immediate and long-term cost savings. As such, implementation of a diagnostic load testing program may have significant short- and long-term paybacks for both bridge owners and users. The current study employed three DAQ systems to demonstrate how diagnostic load testing can be used to augment traditional load rating procedures. The study revealed that diagnostic load testing of a rural, simple-span steel girder bridge resulted in an improved load rating of 273%, refining the test truck inventory rating from 1.5 to 4.1. Similarly, diagnostic load testing of a rural, simple-span steel pony truss bridge resulted in an improved load rating of 170%, going from a test truck inventory rating of 4.5 to 7.6. Analysis of the field-collected data demonstrated the improved ratings were attributable to a number of factors not considered during traditional load rating, such as site-specific factors and contribution of nonstructural components as well as a true measure of the dynamic amplification, load distribution, and composite action. The positive results showcase the possible improvement to load rating by using diagnostic load testing as compared to traditional load rating procedures, leading to a safer bridge inventory.
    publisherASCE
    titleDiagnostic Load Testing for Improved Accuracy of Bridge Load Rating
    typeJournal Paper
    journal volume34
    journal issue5
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0001483
    page9
    treeJournal of Performance of Constructed Facilities:;2020:;Volume ( 034 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian