YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Method for Assessment of Modeling Quality for Asphalt Dielectric Constant to Density Calibration

    Source: Journal of Transportation Engineering, Part B: Pavements:;2020:;Volume ( 146 ):;issue: 003
    Author:
    Trevor Steiner
    ,
    Kyle Hoegh
    ,
    Eyoab Zegeye Teshale
    ,
    Shongtao Dai
    DOI: 10.1061/JPEODX.0000210
    Publisher: ASCE
    Abstract: Traditional measures of asphalt compaction rely primarily on random cores that only measure a small fraction of the pavement. Recently, the use of ground penetrating radar was indicated to be usable as a nondestructive means for the continuous assessment of asphalt compaction. A proposed Hoegh-Dai (HD) model has been successful in predicting air void content within typically achieved field compaction levels but has reduced accuracy at the extremes. This paper proposes an enhanced Minnesota DOT (MnDOT) model to address this issue. A method for assessing modeling quality is proposed to quantify the improvement of the MnDOT model. The procedure is based on the accuracy of fits when run through a Monte Carlo simulation. The developed procedure indicates that the MnDOT model has improved accuracy—with 0.74% air void variation at a dielectric of 4 compared with 3.83% for the HD fit. Additionally, the MnDOT model is more stable for replicate days of the same mix design and falls within the uncertainty of more of the field cores across several projects than the HD model.
    • Download: (922.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Method for Assessment of Modeling Quality for Asphalt Dielectric Constant to Density Calibration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268066
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorTrevor Steiner
    contributor authorKyle Hoegh
    contributor authorEyoab Zegeye Teshale
    contributor authorShongtao Dai
    date accessioned2022-01-30T21:21:50Z
    date available2022-01-30T21:21:50Z
    date issued9/1/2020 12:00:00 AM
    identifier otherJPEODX.0000210.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268066
    description abstractTraditional measures of asphalt compaction rely primarily on random cores that only measure a small fraction of the pavement. Recently, the use of ground penetrating radar was indicated to be usable as a nondestructive means for the continuous assessment of asphalt compaction. A proposed Hoegh-Dai (HD) model has been successful in predicting air void content within typically achieved field compaction levels but has reduced accuracy at the extremes. This paper proposes an enhanced Minnesota DOT (MnDOT) model to address this issue. A method for assessing modeling quality is proposed to quantify the improvement of the MnDOT model. The procedure is based on the accuracy of fits when run through a Monte Carlo simulation. The developed procedure indicates that the MnDOT model has improved accuracy—with 0.74% air void variation at a dielectric of 4 compared with 3.83% for the HD fit. Additionally, the MnDOT model is more stable for replicate days of the same mix design and falls within the uncertainty of more of the field cores across several projects than the HD model.
    publisherASCE
    titleMethod for Assessment of Modeling Quality for Asphalt Dielectric Constant to Density Calibration
    typeJournal Paper
    journal volume146
    journal issue3
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000210
    page9
    treeJournal of Transportation Engineering, Part B: Pavements:;2020:;Volume ( 146 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian