YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    General Analytical Model for the Bond Capacity of NSM FRP-Concrete Joints

    Source: Journal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 006
    Author:
    Tommaso D’Antino
    ,
    Marco Andrea Pisani
    DOI: 10.1061/(ASCE)CC.1943-5614.0001076
    Publisher: ASCE
    Abstract: Fiber-reinforced polymer (FRP) near-surface mounted (NSM) reinforcement represents an effective solution for strengthening and retrofitting existing concrete structures. As it is embedded into concrete, NSM reinforcement is protected from accidental impact, high temperature, and vandalism and it is less prone to debonding than externally bonded reinforcement. However, debonding of the NSM reinforcement remains the main issue associated with this strengthening technique. Numerous studies have focused on the bond behavior of NSM-concrete joints and in some of them analytical models for the prediction of NSM-concrete joint bond capacity were proposed. However, these models are often based on a few experimental results of a specific strengthening configuration. In this paper, a new analytical model to estimate the effective bond length and the bond capacity of NSM-concrete joints that fail due to cohesive debonding within concrete is proposed. The model is based on a pure fracture mechanics Mode-II loading condition and can be applied to either NSM strips, round bars, or rectangular bars. The accuracy of the model proposed and of existing analytical models was assessed by comparing analytical and experimental results of 117 NSM-concrete joints collated from the literature. The assessment showed that the model proposed provided accurate estimations of the NSM-concrete bond capacity for all types of reinforcement considered.
    • Download: (922.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      General Analytical Model for the Bond Capacity of NSM FRP-Concrete Joints

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4268018
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorTommaso D’Antino
    contributor authorMarco Andrea Pisani
    date accessioned2022-01-30T21:20:01Z
    date available2022-01-30T21:20:01Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29CC.1943-5614.0001076.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4268018
    description abstractFiber-reinforced polymer (FRP) near-surface mounted (NSM) reinforcement represents an effective solution for strengthening and retrofitting existing concrete structures. As it is embedded into concrete, NSM reinforcement is protected from accidental impact, high temperature, and vandalism and it is less prone to debonding than externally bonded reinforcement. However, debonding of the NSM reinforcement remains the main issue associated with this strengthening technique. Numerous studies have focused on the bond behavior of NSM-concrete joints and in some of them analytical models for the prediction of NSM-concrete joint bond capacity were proposed. However, these models are often based on a few experimental results of a specific strengthening configuration. In this paper, a new analytical model to estimate the effective bond length and the bond capacity of NSM-concrete joints that fail due to cohesive debonding within concrete is proposed. The model is based on a pure fracture mechanics Mode-II loading condition and can be applied to either NSM strips, round bars, or rectangular bars. The accuracy of the model proposed and of existing analytical models was assessed by comparing analytical and experimental results of 117 NSM-concrete joints collated from the literature. The assessment showed that the model proposed provided accurate estimations of the NSM-concrete bond capacity for all types of reinforcement considered.
    publisherASCE
    titleGeneral Analytical Model for the Bond Capacity of NSM FRP-Concrete Joints
    typeJournal Paper
    journal volume24
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001076
    page13
    treeJournal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian