YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Nile Water-Food-Energy Nexus under Uncertainty: Impacts of the Grand Ethiopian Renaissance Dam

    Source: Journal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 011
    Author:
    Hamdy Elsayed
    ,
    Slobodan Djordjević
    ,
    Dragan A. Savić
    ,
    Ioannis Tsoukalas
    ,
    Christos Makropoulos
    DOI: 10.1061/(ASCE)WR.1943-5452.0001285
    Publisher: ASCE
    Abstract: Achieving a water, food, and energy (WFE) nexus balance through policy interventions is challenging in a transboundary river basin because of the dynamic nature and intersectoral complexity that may cross borders. The Nile basin is shared by a number of riparian countries and is currently experiencing rapid population and economic growth. This has sparked new developments to meet the growing water, food, and energy demands, alleviate poverty, and improve the livelihood in the basin. Such developments could result in basinwide cooperation or trigger conflicts among the riparian countries. A system dynamics model was developed for the entire Nile basin and integrated with the food and energy sectors in Egypt to investigate the future of the WFE nexus with and without the Grand Ethiopian Renaissance Dam (GERD) during filling and subsequent operation using basinwide stochastically generated flows. Different filling rates from 10% to 100% of the average monthly flow are considered during the filling process. Results suggest that the GERD filling and operation would affect the WFE nexus in Egypt, with the impact likely to be significant if the filling process occurred during a dry period. Food production from irrigated agriculture would be reduced by 9%–19% during filling and by about 4% during GERD operation compared with the case without it. The irrigation water supply and hydropower generation in Sudan will be reduced during the filling phase of the GERD, but this is expected to be improved during the dam operation phase as a result of the regulation afforded by the GERD. Ethiopian hydropower generation is expected to be boosted by the GERD during the filling and operation of the dam, adding an average of 15,000  GWh/year once GERD comes online. Lastly, the results reveal the urgency of cooperation and coordination among the riparian countries to minimize the regional risks and maximize the regional rewards associated with the GERD.
    • Download: (2.364Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Nile Water-Food-Energy Nexus under Uncertainty: Impacts of the Grand Ethiopian Renaissance Dam

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267921
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorHamdy Elsayed
    contributor authorSlobodan Djordjević
    contributor authorDragan A. Savić
    contributor authorIoannis Tsoukalas
    contributor authorChristos Makropoulos
    date accessioned2022-01-30T21:16:44Z
    date available2022-01-30T21:16:44Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29WR.1943-5452.0001285.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267921
    description abstractAchieving a water, food, and energy (WFE) nexus balance through policy interventions is challenging in a transboundary river basin because of the dynamic nature and intersectoral complexity that may cross borders. The Nile basin is shared by a number of riparian countries and is currently experiencing rapid population and economic growth. This has sparked new developments to meet the growing water, food, and energy demands, alleviate poverty, and improve the livelihood in the basin. Such developments could result in basinwide cooperation or trigger conflicts among the riparian countries. A system dynamics model was developed for the entire Nile basin and integrated with the food and energy sectors in Egypt to investigate the future of the WFE nexus with and without the Grand Ethiopian Renaissance Dam (GERD) during filling and subsequent operation using basinwide stochastically generated flows. Different filling rates from 10% to 100% of the average monthly flow are considered during the filling process. Results suggest that the GERD filling and operation would affect the WFE nexus in Egypt, with the impact likely to be significant if the filling process occurred during a dry period. Food production from irrigated agriculture would be reduced by 9%–19% during filling and by about 4% during GERD operation compared with the case without it. The irrigation water supply and hydropower generation in Sudan will be reduced during the filling phase of the GERD, but this is expected to be improved during the dam operation phase as a result of the regulation afforded by the GERD. Ethiopian hydropower generation is expected to be boosted by the GERD during the filling and operation of the dam, adding an average of 15,000  GWh/year once GERD comes online. Lastly, the results reveal the urgency of cooperation and coordination among the riparian countries to minimize the regional risks and maximize the regional rewards associated with the GERD.
    publisherASCE
    titleThe Nile Water-Food-Energy Nexus under Uncertainty: Impacts of the Grand Ethiopian Renaissance Dam
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001285
    page17
    treeJournal of Water Resources Planning and Management:;2020:;Volume ( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian