YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design, Construction, and Performance of Continuously Reinforced Concrete Pavement Reinforced with GFRP Bars: Case Study

    Source: Journal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 005
    Author:
    Brahim Benmokrane
    ,
    Abdoulaye Sanni Bakouregui
    ,
    Hamdy M. Mohamed
    ,
    Denis Thébeau
    ,
    Omar I. Abdelkarim
    DOI: 10.1061/(ASCE)CC.1943-5614.0001064
    Publisher: ASCE
    Abstract: The application of deicing salt on roads during the winter is one of the main reasons for steel corrosion in reinforced-concrete pavements in cold-weather regions such as Canada and the Northern United States. Steel corrosion creates internal stresses in the concrete that cause the concrete to burst. This reduces the service life of pavements and increases maintenance costs. This study presents a long-term field test of a continuously reinforced-concrete pavement (CRCP) reinforced with glass fiber-reinforced polymer (GFRP) bars located on Highway 40 West (Montreal, Quebec). The design procedures, construction details, performance, and monitoring results for a 306-m-long section of GFRP-CRCP are presented. Three different types of fiber-optic sensors were used to monitor the pavement behavior and to evaluate the long-term performance of this type of CRCP. The field inspection ran for 6 years after the time of construction, and the data covering 30 months were analyzed. The concrete crack width, concrete crack spacing and rate, concrete temperature, concrete strain, and GFRP-bar strain behavior were recorded and investigated. The GFRP-CRCP and a 94-m-long stretch of steel-CRCP on that highway were compared in terms of crack width, spacing, and rate. Site inspection showed that neither type of pavement exceeded the crack-width limit of 1.0 mm set by the available design standard for pavement structures. The crack rate of the CRCP reinforced with GFRP bars was generally lower than that with steel bars. Moreover, the field test results after 6 years under actual service conditions revealed that GFRP-CRCP provides very competitive performance in comparison to steel-CRCP. Lastly, design equations were developed and proposed to determine the longitudinal-reinforcement ratio for the GFRP-CRCP based on the available design standard.
    • Download: (2.600Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design, Construction, and Performance of Continuously Reinforced Concrete Pavement Reinforced with GFRP Bars: Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267883
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorBrahim Benmokrane
    contributor authorAbdoulaye Sanni Bakouregui
    contributor authorHamdy M. Mohamed
    contributor authorDenis Thébeau
    contributor authorOmar I. Abdelkarim
    date accessioned2022-01-30T21:15:16Z
    date available2022-01-30T21:15:16Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29CC.1943-5614.0001064.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267883
    description abstractThe application of deicing salt on roads during the winter is one of the main reasons for steel corrosion in reinforced-concrete pavements in cold-weather regions such as Canada and the Northern United States. Steel corrosion creates internal stresses in the concrete that cause the concrete to burst. This reduces the service life of pavements and increases maintenance costs. This study presents a long-term field test of a continuously reinforced-concrete pavement (CRCP) reinforced with glass fiber-reinforced polymer (GFRP) bars located on Highway 40 West (Montreal, Quebec). The design procedures, construction details, performance, and monitoring results for a 306-m-long section of GFRP-CRCP are presented. Three different types of fiber-optic sensors were used to monitor the pavement behavior and to evaluate the long-term performance of this type of CRCP. The field inspection ran for 6 years after the time of construction, and the data covering 30 months were analyzed. The concrete crack width, concrete crack spacing and rate, concrete temperature, concrete strain, and GFRP-bar strain behavior were recorded and investigated. The GFRP-CRCP and a 94-m-long stretch of steel-CRCP on that highway were compared in terms of crack width, spacing, and rate. Site inspection showed that neither type of pavement exceeded the crack-width limit of 1.0 mm set by the available design standard for pavement structures. The crack rate of the CRCP reinforced with GFRP bars was generally lower than that with steel bars. Moreover, the field test results after 6 years under actual service conditions revealed that GFRP-CRCP provides very competitive performance in comparison to steel-CRCP. Lastly, design equations were developed and proposed to determine the longitudinal-reinforcement ratio for the GFRP-CRCP based on the available design standard.
    publisherASCE
    titleDesign, Construction, and Performance of Continuously Reinforced Concrete Pavement Reinforced with GFRP Bars: Case Study
    typeJournal Paper
    journal volume24
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001064
    page13
    treeJournal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian