YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Punching Shear Design Models for FRP-RC Slab–Column Connections

    Source: Journal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 005
    Author:
    Mohammed G. El-Gendy
    ,
    Ehab F. El-Salakawy
    DOI: 10.1061/(ASCE)CC.1943-5614.0001054
    Publisher: ASCE
    Abstract: Several empirical models have been introduced during the last two decades to estimate the punching capacity of two-way slabs reinforced with fiber-reinforced polymer (FRP) reinforcement. In this study, the applicability of these models on FRP-reinforced concrete (RC) slab-column interior and edge connections subjected to gravity loads is assessed. The models are also calibrated against experiments conducted previously by the authors on FRP-RC edge connections subjected to reversed-cyclic lateral loads. Test results of 68 interior and 25 edge specimens, 6 of which were tested under reversed-cyclic lateral loads, were used to evaluate the available models. Based on the analysis, a universal model capable of accurately predicting the capacity of both interior and edge specimens subjected to gravity or cyclic loads is proposed. The proposed model provided a mean test-to-predicted strength of 1.01 ± 0.14 and 1.01 ± 0.09 for interior and edge specimens, respectively. Furthermore, a design model is proposed to estimate gravity shear limits for FRP-RC connections without shear reinforcement and subjected to cyclic load.
    • Download: (1.084Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Punching Shear Design Models for FRP-RC Slab–Column Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267772
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorMohammed G. El-Gendy
    contributor authorEhab F. El-Salakawy
    date accessioned2022-01-30T21:10:31Z
    date available2022-01-30T21:10:31Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29CC.1943-5614.0001054.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267772
    description abstractSeveral empirical models have been introduced during the last two decades to estimate the punching capacity of two-way slabs reinforced with fiber-reinforced polymer (FRP) reinforcement. In this study, the applicability of these models on FRP-reinforced concrete (RC) slab-column interior and edge connections subjected to gravity loads is assessed. The models are also calibrated against experiments conducted previously by the authors on FRP-RC edge connections subjected to reversed-cyclic lateral loads. Test results of 68 interior and 25 edge specimens, 6 of which were tested under reversed-cyclic lateral loads, were used to evaluate the available models. Based on the analysis, a universal model capable of accurately predicting the capacity of both interior and edge specimens subjected to gravity or cyclic loads is proposed. The proposed model provided a mean test-to-predicted strength of 1.01 ± 0.14 and 1.01 ± 0.09 for interior and edge specimens, respectively. Furthermore, a design model is proposed to estimate gravity shear limits for FRP-RC connections without shear reinforcement and subjected to cyclic load.
    publisherASCE
    titleAssessment of Punching Shear Design Models for FRP-RC Slab–Column Connections
    typeJournal Paper
    journal volume24
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001054
    page15
    treeJournal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian