YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonexistence of Maximum Likelihood Estimation of Variance Components in Some Stochastic Models

    Source: Journal of Surveying Engineering:;2020:;Volume ( 146 ):;issue: 002
    Author:
    Yun Shi
    ,
    Peiliang Xu
    DOI: 10.1061/(ASCE)SU.1943-5428.0000305
    Publisher: ASCE
    Abstract: Although maximum likelihood has been widely used to estimate unknown parameters in stochastic models of random errors, we show that the method cannot be used to estimate variance components for some stochastic models of routine measurement systems under some conditions, because the likelihood function is unbounded for such stochastic models. No optimal solution of variance components exists for these likelihood functions from the point of view of global optimization, implying that variance components for such stochastic models of practical importance cannot be estimated by maximizing the likelihood function.
    • Download: (286.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonexistence of Maximum Likelihood Estimation of Variance Components in Some Stochastic Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267755
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorYun Shi
    contributor authorPeiliang Xu
    date accessioned2022-01-30T21:09:51Z
    date available2022-01-30T21:09:51Z
    date issued5/1/2020 12:00:00 AM
    identifier other%28ASCE%29SU.1943-5428.0000305.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267755
    description abstractAlthough maximum likelihood has been widely used to estimate unknown parameters in stochastic models of random errors, we show that the method cannot be used to estimate variance components for some stochastic models of routine measurement systems under some conditions, because the likelihood function is unbounded for such stochastic models. No optimal solution of variance components exists for these likelihood functions from the point of view of global optimization, implying that variance components for such stochastic models of practical importance cannot be estimated by maximizing the likelihood function.
    publisherASCE
    titleNonexistence of Maximum Likelihood Estimation of Variance Components in Some Stochastic Models
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000305
    page5
    treeJournal of Surveying Engineering:;2020:;Volume ( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian