YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Collapse Simulations of Steel-Concrete Composite Floors under Column Loss Scenarios

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 012
    Author:
    Michalis Hadjioannou
    ,
    Eric B. Williamson
    ,
    Michael D. Engelhardt
    DOI: 10.1061/(ASCE)ST.1943-541X.0002841
    Publisher: ASCE
    Abstract: Characterizing structural resiliency after severe damage to a few load-carrying members is challenging. Engineers use various computational approaches to assess the vulnerability of structures and to evaluate the parameters that affect their response. Few of these approaches are capable of predicting the actual peak load-carrying capacity a damaged structure can withstand before experiencing total collapse, and practically none of them have been verified against actual test results. In this paper, experimental data from large-scale tests on steel–concrete composite floor systems under different column loss scenarios were used to develop and to validate a high-fidelity numerical modeling approach capable of predicting the response of the tests up to total collapse. This approach incorporates geometric and material nonlinearity, explicit modeling of steel and concrete failure, and contact modeling using LS-DYNA version R10.2.0. Nearly all specimen components were modeled using brick elements, including the concrete slab, steel members, bolts, and other connecting elements. The corrugated metal decking was represented with shell elements, and beam elements represent the reinforcing steel and shear studs. The predicted response and ultimate load–carrying capacity up to total collapse show good agreement with the results of the experimental tests. Validating the numerical models revealed the sensitivity of various modeling parameters and demonstrated the potential for inaccurate predictions of response when certain parameters were not correctly specified. The most important of these parameters are described in this manuscript. Lessons learned from the current study are helpful for understanding the mechanisms that have the greatest impact on collapse of composite floor systems, and these lessons can be used to gain insight on the collapse potential of other structures with different geometries or configurations.
    • Download: (3.201Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Collapse Simulations of Steel-Concrete Composite Floors under Column Loss Scenarios

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267742
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMichalis Hadjioannou
    contributor authorEric B. Williamson
    contributor authorMichael D. Engelhardt
    date accessioned2022-01-30T21:09:23Z
    date available2022-01-30T21:09:23Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002841.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267742
    description abstractCharacterizing structural resiliency after severe damage to a few load-carrying members is challenging. Engineers use various computational approaches to assess the vulnerability of structures and to evaluate the parameters that affect their response. Few of these approaches are capable of predicting the actual peak load-carrying capacity a damaged structure can withstand before experiencing total collapse, and practically none of them have been verified against actual test results. In this paper, experimental data from large-scale tests on steel–concrete composite floor systems under different column loss scenarios were used to develop and to validate a high-fidelity numerical modeling approach capable of predicting the response of the tests up to total collapse. This approach incorporates geometric and material nonlinearity, explicit modeling of steel and concrete failure, and contact modeling using LS-DYNA version R10.2.0. Nearly all specimen components were modeled using brick elements, including the concrete slab, steel members, bolts, and other connecting elements. The corrugated metal decking was represented with shell elements, and beam elements represent the reinforcing steel and shear studs. The predicted response and ultimate load–carrying capacity up to total collapse show good agreement with the results of the experimental tests. Validating the numerical models revealed the sensitivity of various modeling parameters and demonstrated the potential for inaccurate predictions of response when certain parameters were not correctly specified. The most important of these parameters are described in this manuscript. Lessons learned from the current study are helpful for understanding the mechanisms that have the greatest impact on collapse of composite floor systems, and these lessons can be used to gain insight on the collapse potential of other structures with different geometries or configurations.
    publisherASCE
    titleCollapse Simulations of Steel-Concrete Composite Floors under Column Loss Scenarios
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002841
    page16
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian