YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Progressive Collapse of 3D Composite Floor Systems with Rigid Connections under External Column Removal Scenarios

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 011
    Author:
    Lu-Ming Ren
    ,
    Bo Yang
    ,
    Kang Chen
    ,
    Ya-Juan Sun
    ,
    De-Yang Kong
    DOI: 10.1061/(ASCE)ST.1943-541X.0002805
    Publisher: ASCE
    Abstract: Progressive collapse of building structures has been a hot research topic since the September 11, 2001, terrorist attacks. These works provide valuable information focused more on beam–column connections and two-dimensional (2D) substructures, and relative studies on three-dimensional (3D) structures are limited, especially high-quality experimental tests on 3D composite floor systems. As is known, external columns are entirely exposed to the outside environment, which makes them more susceptible to be damaged by extreme events like vehicular impact or explosion, as observed in the collapse of the Alfred P. Murrah Federal Building in Oklahoma City in 1995. In this study, two 1/3-scale 3D specimens with four types of connections, including web unreinforced flange bolted (WUFB) connection, fin plate (FP) connection, reduced beam section (RBS) connection, and double angle cleat (DAC) connection, were tested quasi-statically up to failure under external column removal scenarios. Based on the test results, the vertical load–displacement curves, failure modes, deflection profile, and strain development of the structural components were obtained and discussed in detail. The reaction force redistribution in the remaining columns and surrounding restraints was also investigated. Special attention was paid to the contributions of the main load-resisting mechanisms, namely, flexural action (FA), catenary action (CA), and tensile membrane action (TMA), on resisting progressive collapse. The analysis results suggest that, after the failure of an external column, FA would dominate in resisting progressive collapse. Although TMA does contribute to the mitigation of progressive collapse at the large-deformation stage, it plays a secondary role because the total load-carrying capacity has already been severely deteriorated. By contrast, CA might be negligible.
    • Download: (3.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Progressive Collapse of 3D Composite Floor Systems with Rigid Connections under External Column Removal Scenarios

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267707
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorLu-Ming Ren
    contributor authorBo Yang
    contributor authorKang Chen
    contributor authorYa-Juan Sun
    contributor authorDe-Yang Kong
    date accessioned2022-01-30T21:08:05Z
    date available2022-01-30T21:08:05Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002805.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267707
    description abstractProgressive collapse of building structures has been a hot research topic since the September 11, 2001, terrorist attacks. These works provide valuable information focused more on beam–column connections and two-dimensional (2D) substructures, and relative studies on three-dimensional (3D) structures are limited, especially high-quality experimental tests on 3D composite floor systems. As is known, external columns are entirely exposed to the outside environment, which makes them more susceptible to be damaged by extreme events like vehicular impact or explosion, as observed in the collapse of the Alfred P. Murrah Federal Building in Oklahoma City in 1995. In this study, two 1/3-scale 3D specimens with four types of connections, including web unreinforced flange bolted (WUFB) connection, fin plate (FP) connection, reduced beam section (RBS) connection, and double angle cleat (DAC) connection, were tested quasi-statically up to failure under external column removal scenarios. Based on the test results, the vertical load–displacement curves, failure modes, deflection profile, and strain development of the structural components were obtained and discussed in detail. The reaction force redistribution in the remaining columns and surrounding restraints was also investigated. Special attention was paid to the contributions of the main load-resisting mechanisms, namely, flexural action (FA), catenary action (CA), and tensile membrane action (TMA), on resisting progressive collapse. The analysis results suggest that, after the failure of an external column, FA would dominate in resisting progressive collapse. Although TMA does contribute to the mitigation of progressive collapse at the large-deformation stage, it plays a secondary role because the total load-carrying capacity has already been severely deteriorated. By contrast, CA might be negligible.
    publisherASCE
    titleProgressive Collapse of 3D Composite Floor Systems with Rigid Connections under External Column Removal Scenarios
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002805
    page20
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian