YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification of Vortex-Induced Vibration of Tall Building Pinnacle Using Cluster Analysis for Fatigue Evaluation: Application to Burj Khalifa

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 011
    Author:
    Monica Arul
    ,
    Ahsan Kareem
    ,
    Dae Kun Kwon
    DOI: 10.1061/(ASCE)ST.1943-541X.0002799
    Publisher: ASCE
    Abstract: Pinnacles on top of tall buildings are vulnerable to vortex-induced vibrations (VIVs). These structures may undergo large-amplitude vibrations that can lead to fatigue damage accumulation. To assess the performance of buildings and its appendages, numerous structural health monitoring (SHM) programs have been installed on tall buildings. This continuous monitoring generates more than 1 trillion data points per year per building. Also, on many occasions, the data generated by SHM programs contain missing observations. The evaluation of fatigue life using conventional methods becomes an impossible task in this case. This paper introduces the use of machine-learning techniques as a potential solution to deal with the burgeoning data generated by tall building monitoring systems. In particular, the present study involves the evaluation of the crosswind fatigue life of the pinnacle of Burj Khalifa subject to VIVs using cluster analysis. This unsupervised machine-learning technique is used to develop a generalized framework robust to missing data to effectively identify and extract VIVs from a large pool of other responses recorded by the monitoring system. The data generated from 2010 to 2014 by the SmartSync monitoring system installed on Burj Khalifa are utilized for this study. The proposed framework is validated using a wind tunnel dataset of a bridge sectional model undergoing VIVs. The VIVs extracted from the SmartSync system through cluster analysis are used to evaluate the crosswind fatigue damage of the pinnacle of Burj Khalifa using conventional closed-form approximations. The proposed cluster analysis framework uses a step-by-step data-driven decision-making approach, thus widening the applicability of the method to other SHM programs.
    • Download: (3.652Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification of Vortex-Induced Vibration of Tall Building Pinnacle Using Cluster Analysis for Fatigue Evaluation: Application to Burj Khalifa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267700
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMonica Arul
    contributor authorAhsan Kareem
    contributor authorDae Kun Kwon
    date accessioned2022-01-30T21:07:46Z
    date available2022-01-30T21:07:46Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002799.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267700
    description abstractPinnacles on top of tall buildings are vulnerable to vortex-induced vibrations (VIVs). These structures may undergo large-amplitude vibrations that can lead to fatigue damage accumulation. To assess the performance of buildings and its appendages, numerous structural health monitoring (SHM) programs have been installed on tall buildings. This continuous monitoring generates more than 1 trillion data points per year per building. Also, on many occasions, the data generated by SHM programs contain missing observations. The evaluation of fatigue life using conventional methods becomes an impossible task in this case. This paper introduces the use of machine-learning techniques as a potential solution to deal with the burgeoning data generated by tall building monitoring systems. In particular, the present study involves the evaluation of the crosswind fatigue life of the pinnacle of Burj Khalifa subject to VIVs using cluster analysis. This unsupervised machine-learning technique is used to develop a generalized framework robust to missing data to effectively identify and extract VIVs from a large pool of other responses recorded by the monitoring system. The data generated from 2010 to 2014 by the SmartSync monitoring system installed on Burj Khalifa are utilized for this study. The proposed framework is validated using a wind tunnel dataset of a bridge sectional model undergoing VIVs. The VIVs extracted from the SmartSync system through cluster analysis are used to evaluate the crosswind fatigue damage of the pinnacle of Burj Khalifa using conventional closed-form approximations. The proposed cluster analysis framework uses a step-by-step data-driven decision-making approach, thus widening the applicability of the method to other SHM programs.
    publisherASCE
    titleIdentification of Vortex-Induced Vibration of Tall Building Pinnacle Using Cluster Analysis for Fatigue Evaluation: Application to Burj Khalifa
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002799
    page15
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian