YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ground Motion-Dependent Rapid Damage Assessment of Structures Based on Wavelet Transform and Image Analysis Techniques

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 011
    Author:
    Sujith Mangalathu
    ,
    Jong-Su Jeon
    DOI: 10.1061/(ASCE)ST.1943-541X.0002793
    Publisher: ASCE
    Abstract: Rapid and accurate evaluation of the damage state of structures after a seismic event is critical for postevent emergency response and recovery. The existing rapid damage evaluation methodology is typically based on fragility curves incorporated into earthquake alerting platforms. However, the extent of damage predicted solely based on the fragility curves can vary significantly depending on ground motion characteristics. This paper presents a methodology for damage assessment of structures while accounting for temporal and spectral nonstationarity of ground motions using continuous wavelet transform and image-analysis techniques. The methodology involves the establishment of a prediction model for wavelet transform of ground motions and damage state of a structure using convolutional neural networks. The methodology is demonstrated in this paper through two case studies: (1) a low-rise nonductile concrete building frame in California and (2) a four-span concrete box-girder bridge in California. The proposed methodology identified damage states with an accuracy greater than 75% in both cases.
    • Download: (1.397Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ground Motion-Dependent Rapid Damage Assessment of Structures Based on Wavelet Transform and Image Analysis Techniques

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267694
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorSujith Mangalathu
    contributor authorJong-Su Jeon
    date accessioned2022-01-30T21:07:38Z
    date available2022-01-30T21:07:38Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002793.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267694
    description abstractRapid and accurate evaluation of the damage state of structures after a seismic event is critical for postevent emergency response and recovery. The existing rapid damage evaluation methodology is typically based on fragility curves incorporated into earthquake alerting platforms. However, the extent of damage predicted solely based on the fragility curves can vary significantly depending on ground motion characteristics. This paper presents a methodology for damage assessment of structures while accounting for temporal and spectral nonstationarity of ground motions using continuous wavelet transform and image-analysis techniques. The methodology involves the establishment of a prediction model for wavelet transform of ground motions and damage state of a structure using convolutional neural networks. The methodology is demonstrated in this paper through two case studies: (1) a low-rise nonductile concrete building frame in California and (2) a four-span concrete box-girder bridge in California. The proposed methodology identified damage states with an accuracy greater than 75% in both cases.
    publisherASCE
    titleGround Motion-Dependent Rapid Damage Assessment of Structures Based on Wavelet Transform and Image Analysis Techniques
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002793
    page14
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian