YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Evaluation of a Rocking Damage-Free Steel Column Base with Friction Devices

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Fabio Freddi
    ,
    Christoforos A. Dimopoulos
    ,
    Theodore L. Karavasilis
    DOI: 10.1061/(ASCE)ST.1943-541X.0002779
    Publisher: ASCE
    Abstract: This paper presents the experimental evaluation of an earthquake-resilient rocking damage-free steel column base, previously proposed and numerically investigated by the authors. The column base uses post-tensioned high-strength steel bars to control its rocking behavior, and friction devices to dissipate seismic energy. It is equipped with a circular steel plate with rounded edges, which is used as a rocking base. The rounded edges prevent stress concentration and damage of the contact surfaces, whereas the circular shape allows rocking toward all plan directions. In contrast to conventional steel column bases, the proposed column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described by analytical equations. This allows the definition of a step-by-step design procedure which ensures damage-free behavior, self-centering capability, and energy dissipation capacity for a target design base rotation. The experimental tests, presented in this study, were conducted under monotonic and cyclic loads demonstrating the damage-free behavior even under large rotations. The experimental results were used to validate the design procedure and to calibrate refined three-dimensional (3D) nonlinear finite-element models that will allow further investigations.
    • Download: (5.503Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Evaluation of a Rocking Damage-Free Steel Column Base with Friction Devices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267678
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorFabio Freddi
    contributor authorChristoforos A. Dimopoulos
    contributor authorTheodore L. Karavasilis
    date accessioned2022-01-30T21:07:02Z
    date available2022-01-30T21:07:02Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002779.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267678
    description abstractThis paper presents the experimental evaluation of an earthquake-resilient rocking damage-free steel column base, previously proposed and numerically investigated by the authors. The column base uses post-tensioned high-strength steel bars to control its rocking behavior, and friction devices to dissipate seismic energy. It is equipped with a circular steel plate with rounded edges, which is used as a rocking base. The rounded edges prevent stress concentration and damage of the contact surfaces, whereas the circular shape allows rocking toward all plan directions. In contrast to conventional steel column bases, the proposed column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described by analytical equations. This allows the definition of a step-by-step design procedure which ensures damage-free behavior, self-centering capability, and energy dissipation capacity for a target design base rotation. The experimental tests, presented in this study, were conducted under monotonic and cyclic loads demonstrating the damage-free behavior even under large rotations. The experimental results were used to validate the design procedure and to calibrate refined three-dimensional (3D) nonlinear finite-element models that will allow further investigations.
    publisherASCE
    titleExperimental Evaluation of a Rocking Damage-Free Steel Column Base with Friction Devices
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002779
    page20
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian