YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Study of Fixed-Ended High-Strength Aluminum Alloy Angle-Section Columns

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Zhongxing Wang
    ,
    Yuanqing Wang
    ,
    Xiang Yun
    ,
    Leroy Gardner
    ,
    Xiaoguang Hu
    DOI: 10.1061/(ASCE)ST.1943-541X.0002773
    Publisher: ASCE
    Abstract: High-strength aluminum alloys are emerging and gaining increasing prominence in structural engineering. The structural behavior and design of 7A04-T6 high-strength aluminum alloy equal-leg angle-section columns under axial compression are investigated in this study. Eighteen experiments on extruded high-strength aluminum alloy angle-section columns with various lengths were carried out. Complementary material tests and initial geometric imperfection measurements were also performed. The test setup, procedure, and results, including failure modes, load-carrying capacities, and load–end shortening responses, are fully reported. The test program was followed by a numerical study, where refined finite-element (FE) models were first developed and validated against the test results and then utilized to carry out parametric analyses covering a wide range of cross-section dimensions and column lengths. Finally, the load-carrying capacities obtained from the tests and numerical analyses were used to evaluate the accuracy of existing design provisions in European, Chinese, and American standards for aluminum alloy structures and the direct strength method (DSM). The results show that the existing design methods generally yield good capacity predictions for fixed-ended members failing by flexural buckling, but rather conservative and scattered predictions when failure is by flexural-torsional buckling. Improved resistance predictions were achieved through application of a revised DSM-based approach.
    • Download: (2.668Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Study of Fixed-Ended High-Strength Aluminum Alloy Angle-Section Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267671
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZhongxing Wang
    contributor authorYuanqing Wang
    contributor authorXiang Yun
    contributor authorLeroy Gardner
    contributor authorXiaoguang Hu
    date accessioned2022-01-30T21:06:39Z
    date available2022-01-30T21:06:39Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002773.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267671
    description abstractHigh-strength aluminum alloys are emerging and gaining increasing prominence in structural engineering. The structural behavior and design of 7A04-T6 high-strength aluminum alloy equal-leg angle-section columns under axial compression are investigated in this study. Eighteen experiments on extruded high-strength aluminum alloy angle-section columns with various lengths were carried out. Complementary material tests and initial geometric imperfection measurements were also performed. The test setup, procedure, and results, including failure modes, load-carrying capacities, and load–end shortening responses, are fully reported. The test program was followed by a numerical study, where refined finite-element (FE) models were first developed and validated against the test results and then utilized to carry out parametric analyses covering a wide range of cross-section dimensions and column lengths. Finally, the load-carrying capacities obtained from the tests and numerical analyses were used to evaluate the accuracy of existing design provisions in European, Chinese, and American standards for aluminum alloy structures and the direct strength method (DSM). The results show that the existing design methods generally yield good capacity predictions for fixed-ended members failing by flexural buckling, but rather conservative and scattered predictions when failure is by flexural-torsional buckling. Improved resistance predictions were achieved through application of a revised DSM-based approach.
    publisherASCE
    titleExperimental and Numerical Study of Fixed-Ended High-Strength Aluminum Alloy Angle-Section Columns
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002773
    page13
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian