YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stiffness and Strength Demands for Pin-Supported Walls in Reinforced-Concrete Moment Frames

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 009
    Author:
    Zhe Qu
    ,
    Ting Gong
    ,
    Xiaoyue Wang
    ,
    Qiqi Li
    ,
    Tao Wang
    DOI: 10.1061/(ASCE)ST.1943-541X.0002758
    Publisher: ASCE
    Abstract: Criteria are proposed for determining the stiffness and strength demands for the seismic design of pin-supported walls in low- and medium-rise reinforced-concrete moment frames. A plasticity ratio and a global stiffness ratio are introduced to evaluate the effect of pin-supported walls (PS walls) in mobilizing the seismic capacity of the moment frame. Incremental dynamic analyses of 4-, 8-, and 12-story prototype PS wall-moment frames of various global stiffness ratios show that a constant stiffness ratio of two can generally ensure the formation of a global plastic mechanism no matter if the moment frame is a strong column-weak beam one or not. By mobilizing more structural elements to resist the earthquake action, the PS walls also increase the earthquake-resisting strength of the structure. Higher mode vibrations have a major effect on the strength demand for PS walls. Simple criteria are also developed for estimating the strength demands for the purpose of preliminary design of PS walls. The same methods for determining the stiffness and strength demands for PS walls are also applicable to other strong spine systems.
    • Download: (1.503Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stiffness and Strength Demands for Pin-Supported Walls in Reinforced-Concrete Moment Frames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267658
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZhe Qu
    contributor authorTing Gong
    contributor authorXiaoyue Wang
    contributor authorQiqi Li
    contributor authorTao Wang
    date accessioned2022-01-30T21:06:09Z
    date available2022-01-30T21:06:09Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002758.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267658
    description abstractCriteria are proposed for determining the stiffness and strength demands for the seismic design of pin-supported walls in low- and medium-rise reinforced-concrete moment frames. A plasticity ratio and a global stiffness ratio are introduced to evaluate the effect of pin-supported walls (PS walls) in mobilizing the seismic capacity of the moment frame. Incremental dynamic analyses of 4-, 8-, and 12-story prototype PS wall-moment frames of various global stiffness ratios show that a constant stiffness ratio of two can generally ensure the formation of a global plastic mechanism no matter if the moment frame is a strong column-weak beam one or not. By mobilizing more structural elements to resist the earthquake action, the PS walls also increase the earthquake-resisting strength of the structure. Higher mode vibrations have a major effect on the strength demand for PS walls. Simple criteria are also developed for estimating the strength demands for the purpose of preliminary design of PS walls. The same methods for determining the stiffness and strength demands for PS walls are also applicable to other strong spine systems.
    publisherASCE
    titleStiffness and Strength Demands for Pin-Supported Walls in Reinforced-Concrete Moment Frames
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002758
    page13
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian