YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Seismic Performance of Timber Structures Using Resilient Connections: Full-Scale Testing and Design Procedure

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 009
    Author:
    Ashkan Hashemi
    ,
    Hamed Bagheri
    ,
    Seyed Mohammad Mahdi Yousef-Beik
    ,
    Farhad Mohammadi Darani
    ,
    Armin Valadbeigi
    ,
    Pouyan Zarnani
    ,
    Pierre Quenneville
    DOI: 10.1061/(ASCE)ST.1943-541X.0002749
    Publisher: ASCE
    Abstract: The innovative resilient slip friction joint (RSFJ) technology has recently been developed and introduced to the construction industry. This technology not only aims to provide life safety for the occupants, but also to reduce earthquake-induced damage so the building can be reoccupied after an earthquake with minimum business disruption. While the seismic behavior of the conventional timber structures may be acceptable, previous research showed they have significant shortcomings such as irrecoverable inelastic damage in the fasteners, high response accelerations, and possible residual displacements. This paper presents dynamic component test results on these joints to investigate their performance under rapid load cycles. In addition, experimental results related to full-scale bidirectional testing of a rocking laminated veneer lumber (LVL) panel with RSFJ hold-downs are presented. Furthermore, a progressive step-by-step analysis and preliminary design procedure for structures using this technology is proposed that is based on the use of force-based design principle. Accordingly, a numerical model for a 5-story timber structure was developed and then the proposed procedure was applied to the model to design the connectors. Then the model was subjected to nonlinear static pushover and nonlinear dynamic time–history simulations to investigate the seismic performance of the structure. Finally, the performance of the case study structure was compared with a similar structure with the RSFJs replaced with conventional friction dampers. The findings of this research demonstrate that the proposed system has the potential to be considered as an efficient resilient seismic solution for timber structures and the presented design procedure can potentially be used for preliminary design of buildings with RSFJs.
    • Download: (3.402Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Seismic Performance of Timber Structures Using Resilient Connections: Full-Scale Testing and Design Procedure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267656
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAshkan Hashemi
    contributor authorHamed Bagheri
    contributor authorSeyed Mohammad Mahdi Yousef-Beik
    contributor authorFarhad Mohammadi Darani
    contributor authorArmin Valadbeigi
    contributor authorPouyan Zarnani
    contributor authorPierre Quenneville
    date accessioned2022-01-30T21:06:07Z
    date available2022-01-30T21:06:07Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002749.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267656
    description abstractThe innovative resilient slip friction joint (RSFJ) technology has recently been developed and introduced to the construction industry. This technology not only aims to provide life safety for the occupants, but also to reduce earthquake-induced damage so the building can be reoccupied after an earthquake with minimum business disruption. While the seismic behavior of the conventional timber structures may be acceptable, previous research showed they have significant shortcomings such as irrecoverable inelastic damage in the fasteners, high response accelerations, and possible residual displacements. This paper presents dynamic component test results on these joints to investigate their performance under rapid load cycles. In addition, experimental results related to full-scale bidirectional testing of a rocking laminated veneer lumber (LVL) panel with RSFJ hold-downs are presented. Furthermore, a progressive step-by-step analysis and preliminary design procedure for structures using this technology is proposed that is based on the use of force-based design principle. Accordingly, a numerical model for a 5-story timber structure was developed and then the proposed procedure was applied to the model to design the connectors. Then the model was subjected to nonlinear static pushover and nonlinear dynamic time–history simulations to investigate the seismic performance of the structure. Finally, the performance of the case study structure was compared with a similar structure with the RSFJs replaced with conventional friction dampers. The findings of this research demonstrate that the proposed system has the potential to be considered as an efficient resilient seismic solution for timber structures and the presented design procedure can potentially be used for preliminary design of buildings with RSFJs.
    publisherASCE
    titleEnhanced Seismic Performance of Timber Structures Using Resilient Connections: Full-Scale Testing and Design Procedure
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002749
    page15
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian