YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Macroscopic Model for Spatial Timber Plate Structures with Integral Mechanical Attachments

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 010
    Author:
    Aryan Rezaei Rad
    ,
    Henry V. Burton
    ,
    Yves Weinand
    DOI: 10.1061/(ASCE)ST.1943-541X.0002726
    Publisher: ASCE
    Abstract: The use of integral mechanical attachments (IMAs) in spatial free-form timber plate structures has been revitalized by the production of engineered boards and recent developments in digital fabrication and computer-aided design. Despite the widespread interest in utilizing such structural systems, there have been very few efforts to develop modeling strategies that can be used by practitioners. Detailed finite-element (FE) models are typically computationally expensive and require advanced expertise. Accordingly, this paper introduces a simplified yet robust macroscopic modeling technique for spatial free-form timber plate structures with IMAs. This approach employs only beam and spring elements to simulate the structural behavior. The macromodel was introduced and the associated mechanical properties were computed. FE models constructed using shell elements and the results from recent experiments performed on a full-scale prototype were used to verify the proposed macromodel. The results showed that the response of the macromodel was closely in line with that of the experiments and FE models. Despite its simplicity, the macromodel is robust and can simulate the behavior of integrally attached timber plates. It was also demonstrated that the computational time for the macromodel is significantly less than the FE simulation.
    • Download: (4.126Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Macroscopic Model for Spatial Timber Plate Structures with Integral Mechanical Attachments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267632
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAryan Rezaei Rad
    contributor authorHenry V. Burton
    contributor authorYves Weinand
    date accessioned2022-01-30T21:05:18Z
    date available2022-01-30T21:05:18Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002726.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267632
    description abstractThe use of integral mechanical attachments (IMAs) in spatial free-form timber plate structures has been revitalized by the production of engineered boards and recent developments in digital fabrication and computer-aided design. Despite the widespread interest in utilizing such structural systems, there have been very few efforts to develop modeling strategies that can be used by practitioners. Detailed finite-element (FE) models are typically computationally expensive and require advanced expertise. Accordingly, this paper introduces a simplified yet robust macroscopic modeling technique for spatial free-form timber plate structures with IMAs. This approach employs only beam and spring elements to simulate the structural behavior. The macromodel was introduced and the associated mechanical properties were computed. FE models constructed using shell elements and the results from recent experiments performed on a full-scale prototype were used to verify the proposed macromodel. The results showed that the response of the macromodel was closely in line with that of the experiments and FE models. Despite its simplicity, the macromodel is robust and can simulate the behavior of integrally attached timber plates. It was also demonstrated that the computational time for the macromodel is significantly less than the FE simulation.
    publisherASCE
    titleMacroscopic Model for Spatial Timber Plate Structures with Integral Mechanical Attachments
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002726
    page23
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian