YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on Compressive Behavior of FRP-Confined Expansive Rubberized Concrete

    Source: Journal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 004
    Author:
    Reza Hassanli
    ,
    Osama Youssf
    ,
    Tom Vincent
    ,
    Julie E. Mills
    ,
    Allan Manalo
    ,
    Rebecca Gravina
    DOI: 10.1061/(ASCE)CC.1943-5614.0001038
    Publisher: ASCE
    Abstract: This paper presents the results of an experimental study into the behavior of rubberized concrete-filled fiber-reinforced polymer tube (CFFT) columns, where the fiber-reinforced polymer (FRP) confining layer is prestressed by using an expansive agent (EA). The study focuses on utilizing the incompressibility property of rubber in improving the strength properties of crumb rubber concrete (CRC). A total of 27 CFFT columns were tested under axial compression and the effect of rubber content, prestress level, confinement amount and curing condition was studied. Different EAs with cement replacement ratios of 0%, 7.5%, and 15% were used to examine the influence of different levels of hoop prestress on the axial compressive behavior. The influence of amount of confinement was examined with specimens prepared with either one or two layers of CFRP. The influence of the curing condition was also examined by preparing half of the one-layer specimens with steel plates confining the specimens in the axial direction during curing. Finally, both flexible and stiff molds were used to examine the influence of mold stiffness on prestress development during curing. The lateral prestress provided by the expansive agent and FRP confinement was used to mitigate the typical strength reduction associated with CRC. The positive effect of this technique is two-fold. First, the pressure produced by the expansive agent compresses the cement paste and rubber particles together, reducing porosity and increasing interaction and interface friction between the rubber particles and cement paste. Second, rubber is generally considered nearly incompressible, with a Poisson's ratio of approximately 0.5, hence as the rubber is compressed in one direction, it expands significantly in the other directions. Using rubber in unconfined and non-prestressed concrete results in strength reduction; however, the combined effects of FRP-confinement and lateral prestress on CRC can lead to significant increases in the columns' axial stiffness and strength. The stresses and strains developed during curing for the expansive mixes were found to be considerably higher in CRC compared with conventional concrete (CC), indicating that an EA is more effective in developing prestress in rubberized concrete. Moreover, the mold stiffness was found to have a noticeable influence on the compressive strength of concrete. Using stiff molds resulted in unrealistic and unsafe strength evaluation and, hence, should be avoided if expansive concrete is used, or the results should be modified to account for the effect of confinement provided by the stiff molds. It was also observed that the confinement effect in CRC was higher compared with that of CC, which is due to the incompressibility of rubber. Finally, applying confinement plates to the ends of the concrete during curing had insignificant impact on the compressive behavior.
    • Download: (3.703Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on Compressive Behavior of FRP-Confined Expansive Rubberized Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267617
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorReza Hassanli
    contributor authorOsama Youssf
    contributor authorTom Vincent
    contributor authorJulie E. Mills
    contributor authorAllan Manalo
    contributor authorRebecca Gravina
    date accessioned2022-01-30T21:04:44Z
    date available2022-01-30T21:04:44Z
    date issued8/1/2020 12:00:00 AM
    identifier other%28ASCE%29CC.1943-5614.0001038.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267617
    description abstractThis paper presents the results of an experimental study into the behavior of rubberized concrete-filled fiber-reinforced polymer tube (CFFT) columns, where the fiber-reinforced polymer (FRP) confining layer is prestressed by using an expansive agent (EA). The study focuses on utilizing the incompressibility property of rubber in improving the strength properties of crumb rubber concrete (CRC). A total of 27 CFFT columns were tested under axial compression and the effect of rubber content, prestress level, confinement amount and curing condition was studied. Different EAs with cement replacement ratios of 0%, 7.5%, and 15% were used to examine the influence of different levels of hoop prestress on the axial compressive behavior. The influence of amount of confinement was examined with specimens prepared with either one or two layers of CFRP. The influence of the curing condition was also examined by preparing half of the one-layer specimens with steel plates confining the specimens in the axial direction during curing. Finally, both flexible and stiff molds were used to examine the influence of mold stiffness on prestress development during curing. The lateral prestress provided by the expansive agent and FRP confinement was used to mitigate the typical strength reduction associated with CRC. The positive effect of this technique is two-fold. First, the pressure produced by the expansive agent compresses the cement paste and rubber particles together, reducing porosity and increasing interaction and interface friction between the rubber particles and cement paste. Second, rubber is generally considered nearly incompressible, with a Poisson's ratio of approximately 0.5, hence as the rubber is compressed in one direction, it expands significantly in the other directions. Using rubber in unconfined and non-prestressed concrete results in strength reduction; however, the combined effects of FRP-confinement and lateral prestress on CRC can lead to significant increases in the columns' axial stiffness and strength. The stresses and strains developed during curing for the expansive mixes were found to be considerably higher in CRC compared with conventional concrete (CC), indicating that an EA is more effective in developing prestress in rubberized concrete. Moreover, the mold stiffness was found to have a noticeable influence on the compressive strength of concrete. Using stiff molds resulted in unrealistic and unsafe strength evaluation and, hence, should be avoided if expansive concrete is used, or the results should be modified to account for the effect of confinement provided by the stiff molds. It was also observed that the confinement effect in CRC was higher compared with that of CC, which is due to the incompressibility of rubber. Finally, applying confinement plates to the ends of the concrete during curing had insignificant impact on the compressive behavior.
    publisherASCE
    titleExperimental Study on Compressive Behavior of FRP-Confined Expansive Rubberized Concrete
    typeJournal Paper
    journal volume24
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001038
    page14
    treeJournal of Composites for Construction:;2020:;Volume ( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian