YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiple-Damage State Retrofit of Steel MRFs with Composite Beams Using a Minimal-Disturbance Arm Damper

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 009
    Author:
    Giuseppe A. Marzano
    ,
    Konstantinos A. Skalomenos
    ,
    Masahiro Kurata
    DOI: 10.1061/(ASCE)ST.1943-541X.0002697
    Publisher: ASCE
    Abstract: This study presents a design method for the seismic retrofit and rehabilitation of steel moment-resisting frames (MRFs) with composite steel–concrete beams using the minimal-disturbance arm damper (MDAD). The purpose is to enhance the seismic performance of this type of MRF by controlling both the overall structure deformation (roof and story drifts) and damage of individual members (local ductility). The MDAD imposes adequate strength and stiffness to limit the story drifts to the targeted values as well as redistributes the internal forces in order to delay beam yielding and fracture. The proposed design method for seismic retrofit and rehabilitation of MRFs integrates the member’s strength and ductility indices, such as the bending moment and plastic rotation, into the global frame response in terms of overall shear capacity and story drift through equations developed based on beam-column theory principles. The proposed design method aims to retrofit the structure to satisfy multiple performance objectives, such as (1) the delay of steel beam yielding, (2) the reduction of beam plastic rotation, (3) the control of strength reduction in postfracture behavior, and (4) the recovery of overall shear strength after frame rehabilitation. An experimental campaign was also conducted to evaluate the performance of both retrofitted and bare MRFs. The effectiveness of the proposed retrofit and rehabilitation procedure in limiting the story deformation and improving member ductility of the MRFs as well as its efficiency in recovering the overall strength capacity of heavily damaged framed structures was validated.
    • Download: (1.276Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiple-Damage State Retrofit of Steel MRFs with Composite Beams Using a Minimal-Disturbance Arm Damper

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267605
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorGiuseppe A. Marzano
    contributor authorKonstantinos A. Skalomenos
    contributor authorMasahiro Kurata
    date accessioned2022-01-30T21:04:21Z
    date available2022-01-30T21:04:21Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002697.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267605
    description abstractThis study presents a design method for the seismic retrofit and rehabilitation of steel moment-resisting frames (MRFs) with composite steel–concrete beams using the minimal-disturbance arm damper (MDAD). The purpose is to enhance the seismic performance of this type of MRF by controlling both the overall structure deformation (roof and story drifts) and damage of individual members (local ductility). The MDAD imposes adequate strength and stiffness to limit the story drifts to the targeted values as well as redistributes the internal forces in order to delay beam yielding and fracture. The proposed design method for seismic retrofit and rehabilitation of MRFs integrates the member’s strength and ductility indices, such as the bending moment and plastic rotation, into the global frame response in terms of overall shear capacity and story drift through equations developed based on beam-column theory principles. The proposed design method aims to retrofit the structure to satisfy multiple performance objectives, such as (1) the delay of steel beam yielding, (2) the reduction of beam plastic rotation, (3) the control of strength reduction in postfracture behavior, and (4) the recovery of overall shear strength after frame rehabilitation. An experimental campaign was also conducted to evaluate the performance of both retrofitted and bare MRFs. The effectiveness of the proposed retrofit and rehabilitation procedure in limiting the story deformation and improving member ductility of the MRFs as well as its efficiency in recovering the overall strength capacity of heavily damaged framed structures was validated.
    publisherASCE
    titleMultiple-Damage State Retrofit of Steel MRFs with Composite Beams Using a Minimal-Disturbance Arm Damper
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002697
    page12
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian