YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Full-Scale Cyclic Rotation and Shear-Load Testing of Double Web with Top and Seat Angle Beam-Column Connections

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 008
    Author:
    Thierry Béland
    ,
    Robert Tremblay
    ,
    Eric M. Hines
    ,
    Larry A. Fahnestock
    DOI: 10.1061/(ASCE)ST.1943-541X.0002685
    Publisher: ASCE
    Abstract: Partially restrained beam-column connections such as bolted double web with top and seat angle connections can be used in the gravity load system of steel buildings to develop secondary moment frame action and enhance seismic collapse prevention. To assess the gravity beam-column connection role in lateral reserve capacity, a comprehensive test program was conducted at Ecole Polytechnique Montreal to characterize the nonlinear hysteretic behavior of bolted angle connections subjected to simultaneous gravity shear and rotational demand from the moment frame action. Fifteen full-scale beam-column subassemblages of four different geometries were tested to characterize their deformation pattern and failure modes. The influence of the following critical parameters on the connection hysteretic behavior was investigated: the top and seat angle geometrical parameters, the beam and column sections, the gravity shear load, and the loading history. The envelope curve of each test was mathematically characterized to numerically reproduce the connection behavior. The tested connections exhibited large ductility and significant moment capacity, which translated into a substantial energy dissipation capacity. The use of bolted angles for gravity framing connections could thus be beneficial by enhancing the reserve capacity and providing lateral resistance to mitigate seismic building collapse.
    • Download: (4.142Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Full-Scale Cyclic Rotation and Shear-Load Testing of Double Web with Top and Seat Angle Beam-Column Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267597
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorThierry Béland
    contributor authorRobert Tremblay
    contributor authorEric M. Hines
    contributor authorLarry A. Fahnestock
    date accessioned2022-01-30T21:04:06Z
    date available2022-01-30T21:04:06Z
    date issued8/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002685.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267597
    description abstractPartially restrained beam-column connections such as bolted double web with top and seat angle connections can be used in the gravity load system of steel buildings to develop secondary moment frame action and enhance seismic collapse prevention. To assess the gravity beam-column connection role in lateral reserve capacity, a comprehensive test program was conducted at Ecole Polytechnique Montreal to characterize the nonlinear hysteretic behavior of bolted angle connections subjected to simultaneous gravity shear and rotational demand from the moment frame action. Fifteen full-scale beam-column subassemblages of four different geometries were tested to characterize their deformation pattern and failure modes. The influence of the following critical parameters on the connection hysteretic behavior was investigated: the top and seat angle geometrical parameters, the beam and column sections, the gravity shear load, and the loading history. The envelope curve of each test was mathematically characterized to numerically reproduce the connection behavior. The tested connections exhibited large ductility and significant moment capacity, which translated into a substantial energy dissipation capacity. The use of bolted angles for gravity framing connections could thus be beneficial by enhancing the reserve capacity and providing lateral resistance to mitigate seismic building collapse.
    publisherASCE
    titleFull-Scale Cyclic Rotation and Shear-Load Testing of Double Web with Top and Seat Angle Beam-Column Connections
    typeJournal Paper
    journal volume146
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002685
    page14
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian