YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hurricane Surge-Wave Building Fragility Methodology for Use in Damage, Loss, and Resilience Analysis

    Source: Journal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 001
    Author:
    Trung Q. Do
    ,
    John W. van de Lindt
    ,
    Daniel T. Cox
    DOI: 10.1061/(ASCE)ST.1943-541X.0002472
    Publisher: ASCE
    Abstract: Physics-based fragilities for damage, loss, and resilience analysis are needed to model a community to earthquakes, hurricane winds, tornados, or floods. Currently, most building flood fragilities such as those available in assessment tools such as HAZUS-MH do not account for the hydrodynamic forces caused by surge and waves, only the depth of a flood. In this paper, a methodology to evaluate forces on all building components including windows, doors, walls, and floor systems for elevated coastal buildings under a combination of hurricane surge and waves is proposed. The model was validated by comparing vertical and horizontal forces from existing laboratory test results of a one-tenth-scale elevated structure under wave loading. A full-scale wood-frame residential building was then modeled as an example to illustrate the method and is intended to be representative of an elevated coastal structure in a typical coastal region of the United States. The hurricane was modeled as a combination of two intensity parameters, namely significant wave height and surge level at the building location and is better able to represent the loading condition and thus damage to the structure than static flood alone. Fragility surfaces for four damage states for the building as a whole were generated as a damage combination of all damageable building components. Finally, a comparison of the loss estimated using the fragility surfaces versus the current loss model in HAZUS-MH is provided to illustrate the effect on loss estimates when including wave height in predicting damage for near-coast buildings under hurricane wave and surge. By calibrating the physics-based fragilities with empirical data, the surface fragilities developed in this paper are ready to use in HAZUS-MH or other loss and resilience-focused analysis at the community level for coastal communities subjected to both waves and storm surge during hurricanes.
    • Download: (9.412Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hurricane Surge-Wave Building Fragility Methodology for Use in Damage, Loss, and Resilience Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267575
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorTrung Q. Do
    contributor authorJohn W. van de Lindt
    contributor authorDaniel T. Cox
    date accessioned2022-01-30T21:03:16Z
    date available2022-01-30T21:03:16Z
    date issued1/1/2020 12:00:00 AM
    identifier other%28ASCE%29ST.1943-541X.0002472.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267575
    description abstractPhysics-based fragilities for damage, loss, and resilience analysis are needed to model a community to earthquakes, hurricane winds, tornados, or floods. Currently, most building flood fragilities such as those available in assessment tools such as HAZUS-MH do not account for the hydrodynamic forces caused by surge and waves, only the depth of a flood. In this paper, a methodology to evaluate forces on all building components including windows, doors, walls, and floor systems for elevated coastal buildings under a combination of hurricane surge and waves is proposed. The model was validated by comparing vertical and horizontal forces from existing laboratory test results of a one-tenth-scale elevated structure under wave loading. A full-scale wood-frame residential building was then modeled as an example to illustrate the method and is intended to be representative of an elevated coastal structure in a typical coastal region of the United States. The hurricane was modeled as a combination of two intensity parameters, namely significant wave height and surge level at the building location and is better able to represent the loading condition and thus damage to the structure than static flood alone. Fragility surfaces for four damage states for the building as a whole were generated as a damage combination of all damageable building components. Finally, a comparison of the loss estimated using the fragility surfaces versus the current loss model in HAZUS-MH is provided to illustrate the effect on loss estimates when including wave height in predicting damage for near-coast buildings under hurricane wave and surge. By calibrating the physics-based fragilities with empirical data, the surface fragilities developed in this paper are ready to use in HAZUS-MH or other loss and resilience-focused analysis at the community level for coastal communities subjected to both waves and storm surge during hurricanes.
    publisherASCE
    titleHurricane Surge-Wave Building Fragility Methodology for Use in Damage, Loss, and Resilience Analysis
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0002472
    page15
    treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian