YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Wastewater Treatment Sludge on Cracking Resistance of Hot Mix Asphalt Mixes at Lower Mixing Temperature

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 012
    Author:
    Robeam S. Melaku
    ,
    Daba S. Gedafa
    DOI: 10.1061/(ASCE)MT.1943-5533.0003506
    Publisher: ASCE
    Abstract: Wastewater treatment sludge (WTS) is a by-product of wastewater treatment. Moisture holding capacity, high organic, complex inorganics, and zeolite-like chemical contents make WTS a valuable pavement additive. This study evaluated the impacts of 1.5% WTS on fatigue cracking and low-temperature cracking resistance of asphalt mixes. Reclaimed asphalt pavement (RAP) from North Dakota Highway-17 and I-29 projects were used. Three mixes—0%, 40%, and 60% RAP content—with and without WTS, were considered. The rheology of extracted RAP was tested for high-temperature continuous temperature, intermediate-temperature fatigue cracking resistance using linear amplitude sweep (LAS), and low-temperature cracking resistance using 4-mm parallel plate geometry. Rheology tests were conducted using a dynamic shear rheometer (DSR). Results showed that RAP from Highway-17 was relatively stiffer than the I-29 RAP. RAP mixes modified with 1.5% WTS were prepared at 40°C (104°F) lower mixing temperature than the control. Semicircular bend (SCB) and disk-shaped compact tension (DCT) tests were used to evaluate the fatigue cracking and low-temperature cracking resistance of the mixes, respectively. Results indicated that WTS improved the fatigue and low-temperature cracking resistance of 0%, 40%, and 60% RAP mixes from both RAP sources. The effect of WTS on fatigue cracking resistance increased with RAP content, whereas the effect of WTS on low-temperature cracking decreased with RAP content. Low-temperature cracking resistance of the 40% RAP mix was 24% higher than that of unmodified 0% RAP mix for Highway-17 mixes, and was almost similar for I-29 mixes. This shows WTS can be used as an additive to improve fatigue and low-temperature cracking resistance of mixes with RAP.
    • Download: (851.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Wastewater Treatment Sludge on Cracking Resistance of Hot Mix Asphalt Mixes at Lower Mixing Temperature

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267423
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorRobeam S. Melaku
    contributor authorDaba S. Gedafa
    date accessioned2022-01-30T20:57:56Z
    date available2022-01-30T20:57:56Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29MT.1943-5533.0003506.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267423
    description abstractWastewater treatment sludge (WTS) is a by-product of wastewater treatment. Moisture holding capacity, high organic, complex inorganics, and zeolite-like chemical contents make WTS a valuable pavement additive. This study evaluated the impacts of 1.5% WTS on fatigue cracking and low-temperature cracking resistance of asphalt mixes. Reclaimed asphalt pavement (RAP) from North Dakota Highway-17 and I-29 projects were used. Three mixes—0%, 40%, and 60% RAP content—with and without WTS, were considered. The rheology of extracted RAP was tested for high-temperature continuous temperature, intermediate-temperature fatigue cracking resistance using linear amplitude sweep (LAS), and low-temperature cracking resistance using 4-mm parallel plate geometry. Rheology tests were conducted using a dynamic shear rheometer (DSR). Results showed that RAP from Highway-17 was relatively stiffer than the I-29 RAP. RAP mixes modified with 1.5% WTS were prepared at 40°C (104°F) lower mixing temperature than the control. Semicircular bend (SCB) and disk-shaped compact tension (DCT) tests were used to evaluate the fatigue cracking and low-temperature cracking resistance of the mixes, respectively. Results indicated that WTS improved the fatigue and low-temperature cracking resistance of 0%, 40%, and 60% RAP mixes from both RAP sources. The effect of WTS on fatigue cracking resistance increased with RAP content, whereas the effect of WTS on low-temperature cracking decreased with RAP content. Low-temperature cracking resistance of the 40% RAP mix was 24% higher than that of unmodified 0% RAP mix for Highway-17 mixes, and was almost similar for I-29 mixes. This shows WTS can be used as an additive to improve fatigue and low-temperature cracking resistance of mixes with RAP.
    publisherASCE
    titleImpact of Wastewater Treatment Sludge on Cracking Resistance of Hot Mix Asphalt Mixes at Lower Mixing Temperature
    typeJournal Paper
    journal volume32
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003506
    page8
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian