YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Asphalt Grade and Polymer Type (SBS and EE-2) on Produced PMB and Asphalt Concrete Mix Properties

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 012
    Author:
    Mahmoud Enieb
    ,
    Lina Shbeeb
    ,
    Ibrahim Asi
    ,
    Xu Yang
    ,
    Aboelkasim Diab
    DOI: 10.1061/(ASCE)MT.1943-5533.0003479
    Publisher: ASCE
    Abstract: Laboratory evaluation of elastomer- and plastomer-modified asphalt binders using different grades of asphalt binders and produced asphalt concrete mixes is the subject of this paper. The evaluated polymer modifiers in this study were an elastomer [commercially available styrene-butadiene-styrene (SBS) and a plastomer (functionally modified olefin commercially known as Eastman EE-2)], blended separately with two penetration-grade binders (60/70 and 80/100) at polymer/binder ratios of 2%, 4%, and 6% (by mass). The rheological properties of the polymer-modified binders (PMBs) were tested using a rotational viscometer, dynamic shear rheometer, and bending beam rheometer. The effect of the polymers on the rheological properties of the asphalt binders was investigated before and following standardized short- and long-term oxidative aging. Hot-mix asphalt mixes were prepared and evaluated in terms of the number of performance tests, which included indirect tensile strength, moisture susceptibility, resilient modulus, creep-recovery strain properties, and indirect tension fatigue. Analysis of the obtained PMBs indicated that the addition of the elastomer and plastomer polymers to petroleum asphalts was very useful in obtaining a number of desirable characteristics. The main indicators of such improvements are improved rutting resistance of the unaged and short-term aged binders, and the addition of higher percentages of the polymers resulted in an upward shift of the rutting resistance without impacting the fatigue properties of the binders. The addition of up to 6% of the polymers to the binders raised the performance grade (PG) of the PMBs by at least two grades from their base PG. For the softer binder (i.e., Pen. 80/100), 6% SBS pumped the PG of the binder three grades up. The introduction of varying amounts of elastomer and plastomer polymers can significantly influence the resultant mechanistic properties of mixtures.
    • Download: (1.283Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Asphalt Grade and Polymer Type (SBS and EE-2) on Produced PMB and Asphalt Concrete Mix Properties

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267412
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMahmoud Enieb
    contributor authorLina Shbeeb
    contributor authorIbrahim Asi
    contributor authorXu Yang
    contributor authorAboelkasim Diab
    date accessioned2022-01-30T20:57:31Z
    date available2022-01-30T20:57:31Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29MT.1943-5533.0003479.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267412
    description abstractLaboratory evaluation of elastomer- and plastomer-modified asphalt binders using different grades of asphalt binders and produced asphalt concrete mixes is the subject of this paper. The evaluated polymer modifiers in this study were an elastomer [commercially available styrene-butadiene-styrene (SBS) and a plastomer (functionally modified olefin commercially known as Eastman EE-2)], blended separately with two penetration-grade binders (60/70 and 80/100) at polymer/binder ratios of 2%, 4%, and 6% (by mass). The rheological properties of the polymer-modified binders (PMBs) were tested using a rotational viscometer, dynamic shear rheometer, and bending beam rheometer. The effect of the polymers on the rheological properties of the asphalt binders was investigated before and following standardized short- and long-term oxidative aging. Hot-mix asphalt mixes were prepared and evaluated in terms of the number of performance tests, which included indirect tensile strength, moisture susceptibility, resilient modulus, creep-recovery strain properties, and indirect tension fatigue. Analysis of the obtained PMBs indicated that the addition of the elastomer and plastomer polymers to petroleum asphalts was very useful in obtaining a number of desirable characteristics. The main indicators of such improvements are improved rutting resistance of the unaged and short-term aged binders, and the addition of higher percentages of the polymers resulted in an upward shift of the rutting resistance without impacting the fatigue properties of the binders. The addition of up to 6% of the polymers to the binders raised the performance grade (PG) of the PMBs by at least two grades from their base PG. For the softer binder (i.e., Pen. 80/100), 6% SBS pumped the PG of the binder three grades up. The introduction of varying amounts of elastomer and plastomer polymers can significantly influence the resultant mechanistic properties of mixtures.
    publisherASCE
    titleEffect of Asphalt Grade and Polymer Type (SBS and EE-2) on Produced PMB and Asphalt Concrete Mix Properties
    typeJournal Paper
    journal volume32
    journal issue12
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003479
    page10
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian