YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Wind-Barrier Layout and Wind Turbulence on Aerodynamic Stability of Cable-Supported Bridges

    Source: Journal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 012
    Author:
    Andrija Buljac
    ,
    Hrvoje Kozmar
    ,
    Stanislav Pospíšil
    ,
    Michael Macháček
    ,
    Sergey Kuznetsov
    DOI: 10.1061/(ASCE)BE.1943-5592.0001631
    Publisher: ASCE
    Abstract: Wind barriers are nowadays commonly placed on bridges to protect vehicles from adverse cross-wind effects. In addition to this beneficial influence, wind barriers may adversely affect the bridge dynamic stability. This is particularly exhibited for long-span cable-supported bridges. It is therefore the scope of the present study to analyze the effects of wind barriers on aerodynamic and aeroelastic characteristics of bridge-deck sections of long-span cable-supported bridges together with the respective flow characteristics around bridge-deck sections. The focus is on various arrangements of wind barriers, i.e., (1) wind barriers placed at the windward bridge-deck edge only; (2) wind barriers placed at the leeward bridge-deck edge only; and (3) wind barriers placed at both windward and leeward bridge-deck edges. This was carried out experimentally on small-scale models in a boundary layer wind tunnel. Three typical bridge-deck section models were studied, i.e., Great Belt (Denmark), Kao-Pin Hsi (Taiwan), and Golden Gate (United States). The galloping susceptibility of the bridge-deck sections in all arrangements of wind barriers proved to be the same, as is the case for the empty bridge-deck sections without wind barriers; i.e., from this point of view, wind barriers do not adversely bridge dynamic stability. However, in configurations with the windward wind barrier only, as well as both windward and leeward wind barriers, the flutter susceptibility of the bridge-deck sections increases substantially; i.e., the critical flow velocity for the bridge flutter decreased significantly in comparison with the respective empty bridge-deck sections. For the leeward wind barrier only, the flutter susceptibility of the bridge-deck sections did not change and remained the same as it was for the empty bridge-deck sections. The empty bridge-deck sections do not exhibit any significant change concerning their susceptibility to flutter for various turbulence levels of the incoming freestream flow. The flutter susceptibility of cable-supported bridges equipped with wind barriers is lower in more turbulent incoming flows. The bridge decks with wind barriers are more resilient to flutter in more turbulent winds. Shear layers that separate from the top of the wind barrier may have an important role in the self-excited lift force and the pitch moment and, consequently, the dynamic behavior of bridge decks.
    • Download: (3.972Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Wind-Barrier Layout and Wind Turbulence on Aerodynamic Stability of Cable-Supported Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267395
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorAndrija Buljac
    contributor authorHrvoje Kozmar
    contributor authorStanislav Pospíšil
    contributor authorMichael Macháček
    contributor authorSergey Kuznetsov
    date accessioned2022-01-30T20:56:57Z
    date available2022-01-30T20:56:57Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29BE.1943-5592.0001631.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267395
    description abstractWind barriers are nowadays commonly placed on bridges to protect vehicles from adverse cross-wind effects. In addition to this beneficial influence, wind barriers may adversely affect the bridge dynamic stability. This is particularly exhibited for long-span cable-supported bridges. It is therefore the scope of the present study to analyze the effects of wind barriers on aerodynamic and aeroelastic characteristics of bridge-deck sections of long-span cable-supported bridges together with the respective flow characteristics around bridge-deck sections. The focus is on various arrangements of wind barriers, i.e., (1) wind barriers placed at the windward bridge-deck edge only; (2) wind barriers placed at the leeward bridge-deck edge only; and (3) wind barriers placed at both windward and leeward bridge-deck edges. This was carried out experimentally on small-scale models in a boundary layer wind tunnel. Three typical bridge-deck section models were studied, i.e., Great Belt (Denmark), Kao-Pin Hsi (Taiwan), and Golden Gate (United States). The galloping susceptibility of the bridge-deck sections in all arrangements of wind barriers proved to be the same, as is the case for the empty bridge-deck sections without wind barriers; i.e., from this point of view, wind barriers do not adversely bridge dynamic stability. However, in configurations with the windward wind barrier only, as well as both windward and leeward wind barriers, the flutter susceptibility of the bridge-deck sections increases substantially; i.e., the critical flow velocity for the bridge flutter decreased significantly in comparison with the respective empty bridge-deck sections. For the leeward wind barrier only, the flutter susceptibility of the bridge-deck sections did not change and remained the same as it was for the empty bridge-deck sections. The empty bridge-deck sections do not exhibit any significant change concerning their susceptibility to flutter for various turbulence levels of the incoming freestream flow. The flutter susceptibility of cable-supported bridges equipped with wind barriers is lower in more turbulent incoming flows. The bridge decks with wind barriers are more resilient to flutter in more turbulent winds. Shear layers that separate from the top of the wind barrier may have an important role in the self-excited lift force and the pitch moment and, consequently, the dynamic behavior of bridge decks.
    publisherASCE
    titleEffects of Wind-Barrier Layout and Wind Turbulence on Aerodynamic Stability of Cable-Supported Bridges
    typeJournal Paper
    journal volume25
    journal issue12
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001631
    page18
    treeJournal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian