YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Subcritical Crack Growth in Cementitious Materials Subject to Chemomechanical Deterioration: Numerical Analysis Based on Lattice Model

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 011
    Author:
    Teng Tong
    ,
    Weijin Wang
    ,
    Qiang Yu
    ,
    Chunlin Pan
    DOI: 10.1061/(ASCE)MT.1943-5533.0003414
    Publisher: ASCE
    Abstract: The kinetics of subcritical crack growth (SCG) in hardened cement pastes attacked simultaneously by mechanical damage and calcium leaching was experimentally investigated by a novel test approach in a recent study. Anchored at the experimental benchmarks obtained in the macro- and microcharacterization, material modeling and numerical simulation for SCG under calcium leaching were performed. To utilize the unique physical or chemical laws involved in each individual deterioration process, a two-dimensional (2D) discrete model consisting of two orthotropic lattice systems was constructed to approximate mesostructures of the hardened cement pastes. The two lattice systems were interlinked by the physical variable—the porosity of hardened cement pastes—which evolves with the interaction of matrix cracking and cement dissolution. The proposed material model was implemented in Abaqus through user subroutine VUMAT. The artificial time scale, which allows coarse temporal discretization, was used in the numerical framework and served as the basis for a hybrid of implicit and explicit formulation. This discrete model can realistically describe SCG in hardened cement pastes subject to coupled chemomechanical deterioration.
    • Download: (2.873Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Subcritical Crack Growth in Cementitious Materials Subject to Chemomechanical Deterioration: Numerical Analysis Based on Lattice Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267353
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorTeng Tong
    contributor authorWeijin Wang
    contributor authorQiang Yu
    contributor authorChunlin Pan
    date accessioned2022-01-30T20:55:16Z
    date available2022-01-30T20:55:16Z
    date issued11/1/2020 12:00:00 AM
    identifier other%28ASCE%29MT.1943-5533.0003414.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267353
    description abstractThe kinetics of subcritical crack growth (SCG) in hardened cement pastes attacked simultaneously by mechanical damage and calcium leaching was experimentally investigated by a novel test approach in a recent study. Anchored at the experimental benchmarks obtained in the macro- and microcharacterization, material modeling and numerical simulation for SCG under calcium leaching were performed. To utilize the unique physical or chemical laws involved in each individual deterioration process, a two-dimensional (2D) discrete model consisting of two orthotropic lattice systems was constructed to approximate mesostructures of the hardened cement pastes. The two lattice systems were interlinked by the physical variable—the porosity of hardened cement pastes—which evolves with the interaction of matrix cracking and cement dissolution. The proposed material model was implemented in Abaqus through user subroutine VUMAT. The artificial time scale, which allows coarse temporal discretization, was used in the numerical framework and served as the basis for a hybrid of implicit and explicit formulation. This discrete model can realistically describe SCG in hardened cement pastes subject to coupled chemomechanical deterioration.
    publisherASCE
    titleSubcritical Crack Growth in Cementitious Materials Subject to Chemomechanical Deterioration: Numerical Analysis Based on Lattice Model
    typeJournal Paper
    journal volume32
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003414
    page12
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian