YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flexural and Tensile Strength of Ultra-High-Performance Concrete with ZnPh-Treated Steel Fibers

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 010
    Author:
    Yanping Zhu
    ,
    Yang Zhang
    ,
    Shaoqin Qu
    ,
    Aditya Kumar
    DOI: 10.1061/(ASCE)MT.1943-5533.0003372
    Publisher: ASCE
    Abstract: This study demonstrates the use of novel zinc phosphate (ZnPh)-treated steel fibers in ultra-high-performance concrete (UHPC), replacing the commonly used steel fibers. The effects of ZnPh-treated steel fibers on tensile and flexural strengths of UHPC were investigated through flexural and direct tension tests. The results showed that first cracking strengths were reduced by 9.7% and 0.5% in the flexural and direct tension test specimens, respectively. The ultimate strengths were increased by 16.8% and 18% in the flexural and direct tension test specimens, respectively. Also, in the direct tension test, the ultimate strain at the ultimate strength was increased by 113.1%. scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses revealed that a weaker interface exists between the ZnPh covering and the fiber. This interface resulted in reduction of first cracking strengths, whereas the ZnPh covering improved ultimate strengths due to an increase in friction between the fiber and matrix after the ZnPh peeled off.
    • Download: (4.522Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flexural and Tensile Strength of Ultra-High-Performance Concrete with ZnPh-Treated Steel Fibers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267309
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorYanping Zhu
    contributor authorYang Zhang
    contributor authorShaoqin Qu
    contributor authorAditya Kumar
    date accessioned2022-01-30T20:53:42Z
    date available2022-01-30T20:53:42Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29MT.1943-5533.0003372.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267309
    description abstractThis study demonstrates the use of novel zinc phosphate (ZnPh)-treated steel fibers in ultra-high-performance concrete (UHPC), replacing the commonly used steel fibers. The effects of ZnPh-treated steel fibers on tensile and flexural strengths of UHPC were investigated through flexural and direct tension tests. The results showed that first cracking strengths were reduced by 9.7% and 0.5% in the flexural and direct tension test specimens, respectively. The ultimate strengths were increased by 16.8% and 18% in the flexural and direct tension test specimens, respectively. Also, in the direct tension test, the ultimate strain at the ultimate strength was increased by 113.1%. scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analyses revealed that a weaker interface exists between the ZnPh covering and the fiber. This interface resulted in reduction of first cracking strengths, whereas the ZnPh covering improved ultimate strengths due to an increase in friction between the fiber and matrix after the ZnPh peeled off.
    publisherASCE
    titleFlexural and Tensile Strength of Ultra-High-Performance Concrete with ZnPh-Treated Steel Fibers
    typeJournal Paper
    journal volume32
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003372
    page8
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian