YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Calibration of Strength Reduction Factor for Reinforced Ultra-High-Performance Concrete Bridge Girders in Flexure

    Source: Journal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 010
    Author:
    Wenyuan Xue
    ,
    Fei Peng
    ,
    Weichen Xue
    DOI: 10.1061/(ASCE)BE.1943-5592.0001621
    Publisher: ASCE
    Abstract: Ultra-high-performance concrete (UHPC) has been widely used in bridges and other structures throughout the world. However, very limited studies have been carried out to address the strength reduction factor for reinforced UHPC girders in flexure. This paper, therefore, attempts to develop reliability-based design provisions for the flexural strength of reinforced UHPC bridge girders with steel bars. First, an extensive design scope, which included various common design scenarios, was considered to conduct stochastic simulations. Subsequently, the resistance parameters were evaluated based on the available experimental data and Monte Carlo simulation (MCS). Then, the first-order second-moment method (FOSM) was applied to calibrate strength reduction factors to meet a uniform target reliability level, βT = 3.5, specified in AASHTO LRFD Bridge Design Specifications. To verify the results obtained, a comparison between strength reduction factors calibrated from MCS and those from the FOSM was conducted. Stochastic simulations indicated that the design of reinforced UHPC bridge girders was commonly controlled by the tension limit state. As a result, this study recommended a constant strength reduction factor of 0.90 for reinforced UHPC bridge girders in flexure.
    • Download: (815.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Calibration of Strength Reduction Factor for Reinforced Ultra-High-Performance Concrete Bridge Girders in Flexure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267284
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorWenyuan Xue
    contributor authorFei Peng
    contributor authorWeichen Xue
    date accessioned2022-01-30T20:52:53Z
    date available2022-01-30T20:52:53Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29BE.1943-5592.0001621.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267284
    description abstractUltra-high-performance concrete (UHPC) has been widely used in bridges and other structures throughout the world. However, very limited studies have been carried out to address the strength reduction factor for reinforced UHPC girders in flexure. This paper, therefore, attempts to develop reliability-based design provisions for the flexural strength of reinforced UHPC bridge girders with steel bars. First, an extensive design scope, which included various common design scenarios, was considered to conduct stochastic simulations. Subsequently, the resistance parameters were evaluated based on the available experimental data and Monte Carlo simulation (MCS). Then, the first-order second-moment method (FOSM) was applied to calibrate strength reduction factors to meet a uniform target reliability level, βT = 3.5, specified in AASHTO LRFD Bridge Design Specifications. To verify the results obtained, a comparison between strength reduction factors calibrated from MCS and those from the FOSM was conducted. Stochastic simulations indicated that the design of reinforced UHPC bridge girders was commonly controlled by the tension limit state. As a result, this study recommended a constant strength reduction factor of 0.90 for reinforced UHPC bridge girders in flexure.
    publisherASCE
    titleCalibration of Strength Reduction Factor for Reinforced Ultra-High-Performance Concrete Bridge Girders in Flexure
    typeJournal Paper
    journal volume25
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001621
    page10
    treeJournal of Bridge Engineering:;2020:;Volume ( 025 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian