YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Nano-Based Coatings on Concrete under Aggravated Exposures

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 010
    Author:
    M. R. Sakr
    ,
    M. T. Bassuoni
    DOI: 10.1061/(ASCE)MT.1943-5533.0003349
    Publisher: ASCE
    Abstract: In this study, a nano-silica (5% to 50%) water-based solution and silane/nano-clay (5% to 50%) composite were used as superficial treatments for concrete. The coatings were applied on concretes with different water-to-binder ratios (0.35 to 0.6). The transport properties of treated concrete were evaluated by the rapid chloride penetrability test and absorption and desorption percentages. Moreover, the treated concrete was subjected to severe durability exposures: physical salt attack and salt-frost scaling. Deterioration of the concrete surface was visually assessed and quantified by mass loss; in addition, mineralogical, thermal, and microscopy analyses were performed on concrete specimens to elucidate the mechanisms of enhancement imparted by surface treatments. The results showed that increasing the concentration of nano-silica in the colloid led to improved performance of concrete, with 50% dosage leading to the least penetration depth, absorption and desorption percentages, and mass loss, whereas for the silane/nano-clay composite, a low percentage (5%) of nano-clay was adequate to mitigate the damage of concrete under aggravated conditions.
    • Download: (4.627Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Nano-Based Coatings on Concrete under Aggravated Exposures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267283
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorM. R. Sakr
    contributor authorM. T. Bassuoni
    date accessioned2022-01-30T20:52:51Z
    date available2022-01-30T20:52:51Z
    date issued10/1/2020 12:00:00 AM
    identifier other%28ASCE%29MT.1943-5533.0003349.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267283
    description abstractIn this study, a nano-silica (5% to 50%) water-based solution and silane/nano-clay (5% to 50%) composite were used as superficial treatments for concrete. The coatings were applied on concretes with different water-to-binder ratios (0.35 to 0.6). The transport properties of treated concrete were evaluated by the rapid chloride penetrability test and absorption and desorption percentages. Moreover, the treated concrete was subjected to severe durability exposures: physical salt attack and salt-frost scaling. Deterioration of the concrete surface was visually assessed and quantified by mass loss; in addition, mineralogical, thermal, and microscopy analyses were performed on concrete specimens to elucidate the mechanisms of enhancement imparted by surface treatments. The results showed that increasing the concentration of nano-silica in the colloid led to improved performance of concrete, with 50% dosage leading to the least penetration depth, absorption and desorption percentages, and mass loss, whereas for the silane/nano-clay composite, a low percentage (5%) of nano-clay was adequate to mitigate the damage of concrete under aggravated conditions.
    publisherASCE
    titleEffect of Nano-Based Coatings on Concrete under Aggravated Exposures
    typeJournal Paper
    journal volume32
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003349
    page15
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian