YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Formation of an Organic–Inorganic Hybrid Network Structure by In Situ Polymerization of Silicone to Protect Cultural Heritage Stonework

    Source: Journal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 001
    Author:
    Fangfang Ni
    ,
    Yang Zhao
    ,
    Xiaohui Hou
    ,
    Guangquan Zhen
    ,
    Wan Ni
    ,
    Xinyu Shen
    ,
    Hua Tong
    DOI: 10.1061/(ASCE)MT.1943-5533.0002993
    Publisher: ASCE
    Abstract: Yujia Memorial Archway in Jixian County, Hunan Province, can be considered a typical weathered stone artifact. Different ratios of 3-glycidyl ether propyl trimethoxy silane (GPTMS), 3-amino propyl triethoxy silane (ATS), and hydroxy silicone oil (PDMS-OH) were used to achieve in situ reinforcement of representative weathered stone samples, considering the permeability of the reinforcing material, its compressive strength, and weatherability. In a preliminary assessment, a reaction mechanism of interpenetrating hybrid organic–inorganic networks that can be bonded to the interface between the reinforcement material and the stone artifact is proposed. The amino group attacks the epoxy group by nucleophilic reaction to open the ring; a dehydration condensation occurs to form an epoxy organic network structure, while the silane hydrolyzes and condenses to form a Si-O-Si inorganic network structure. More importantly, the addition of PDMS-OH increases the flexibility and hydrophobicity of the material, further improving overall performance. A multiangle and multilevel comprehensive analysis of the composition, structure, hydrophobicity, macroscopic morphology, and microscopic morphology of the composites was carried out using Fourier transform infrared spectroscopy, Raman, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction, and other techniques. The restoration materials were applied to the weathered stone samples, and the restoration effect was evaluated for the permeability, compressive strength, water absorption, acid resistance, salt resistance, and freeze-thaw resistance of the strengthened samples. The results show that a GPTMS:ATS:PDMS-OH ratio of 14∶7∶9 is the best and can be applied to the in situ reinforcement of dolomite rocks.
    • Download: (2.592Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Formation of an Organic–Inorganic Hybrid Network Structure by In Situ Polymerization of Silicone to Protect Cultural Heritage Stonework

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267164
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorFangfang Ni
    contributor authorYang Zhao
    contributor authorXiaohui Hou
    contributor authorGuangquan Zhen
    contributor authorWan Ni
    contributor authorXinyu Shen
    contributor authorHua Tong
    date accessioned2022-01-30T20:48:46Z
    date available2022-01-30T20:48:46Z
    date issued1/1/2020 12:00:00 AM
    identifier other%28ASCE%29MT.1943-5533.0002993.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267164
    description abstractYujia Memorial Archway in Jixian County, Hunan Province, can be considered a typical weathered stone artifact. Different ratios of 3-glycidyl ether propyl trimethoxy silane (GPTMS), 3-amino propyl triethoxy silane (ATS), and hydroxy silicone oil (PDMS-OH) were used to achieve in situ reinforcement of representative weathered stone samples, considering the permeability of the reinforcing material, its compressive strength, and weatherability. In a preliminary assessment, a reaction mechanism of interpenetrating hybrid organic–inorganic networks that can be bonded to the interface between the reinforcement material and the stone artifact is proposed. The amino group attacks the epoxy group by nucleophilic reaction to open the ring; a dehydration condensation occurs to form an epoxy organic network structure, while the silane hydrolyzes and condenses to form a Si-O-Si inorganic network structure. More importantly, the addition of PDMS-OH increases the flexibility and hydrophobicity of the material, further improving overall performance. A multiangle and multilevel comprehensive analysis of the composition, structure, hydrophobicity, macroscopic morphology, and microscopic morphology of the composites was carried out using Fourier transform infrared spectroscopy, Raman, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction, and other techniques. The restoration materials were applied to the weathered stone samples, and the restoration effect was evaluated for the permeability, compressive strength, water absorption, acid resistance, salt resistance, and freeze-thaw resistance of the strengthened samples. The results show that a GPTMS:ATS:PDMS-OH ratio of 14∶7∶9 is the best and can be applied to the in situ reinforcement of dolomite rocks.
    publisherASCE
    titleFormation of an Organic–Inorganic Hybrid Network Structure by In Situ Polymerization of Silicone to Protect Cultural Heritage Stonework
    typeJournal Paper
    journal volume32
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002993
    page10
    treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian