YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation and Prediction of the Hazard Potential Level of Dam Infrastructures Using Computational Artificial Intelligence Algorithms

    Source: Journal of Management in Engineering:;2020:;Volume ( 036 ):;issue: 005
    Author:
    Rayan Assaad
    ,
    Islam H. El-adaway
    DOI: 10.1061/(ASCE)ME.1943-5479.0000810
    Publisher: ASCE
    Abstract: Failures of dams cause immense property and environmental damages and take thousands of lives. As such, the goal of this paper is to evaluate and predict the hazard potential level of dams in the US using a comparative approach based on computational artificial intelligence (AI) algorithms. The research methodology comprised data collection from the National Inventory of Dams (NID); data preprocessing; data processing; and model selection and evaluation. To this end, the authors: (1) identified the best subset of variables that affect the prediction of the hazard potential level of dams in the US; (2) investigated the performance of two AI computational algorithms: artificial neural networks (ANNs) and k-nearest neighbors (KNNs) for the evaluation and prediction of the hazard potential levels of US dams; and (3) developed a decision support tool that could be used by the agencies responsible for the management of dams in the US with the capability to predict the hazard potential with good accuracy. The obtained results reflected that the ANN algorithm yielded better accuracy compared to the KNN algorithm. In addition, the conclusions indicated that 19 variables pertaining to dams in the US could affect the hazard potential level of dams. The output is a decision support system that is able to evaluate the hazard potential of dams with a prediction accuracy of 85.70%. This study contributes to the management in engineering’s body of knowledge by devising a data-driven framework that is valuable for dams’ owners and authorities. Ultimately, the developed computational AI algorithm could be used to evaluate and predict the hazard potential level of US dams with good accuracy while minimizing the efforts, time, and costs associated with formal inspection of the dams.
    • Download: (1.815Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation and Prediction of the Hazard Potential Level of Dam Infrastructures Using Computational Artificial Intelligence Algorithms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267108
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorRayan Assaad
    contributor authorIslam H. El-adaway
    date accessioned2022-01-30T20:46:59Z
    date available2022-01-30T20:46:59Z
    date issued9/1/2020 12:00:00 AM
    identifier other%28ASCE%29ME.1943-5479.0000810.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267108
    description abstractFailures of dams cause immense property and environmental damages and take thousands of lives. As such, the goal of this paper is to evaluate and predict the hazard potential level of dams in the US using a comparative approach based on computational artificial intelligence (AI) algorithms. The research methodology comprised data collection from the National Inventory of Dams (NID); data preprocessing; data processing; and model selection and evaluation. To this end, the authors: (1) identified the best subset of variables that affect the prediction of the hazard potential level of dams in the US; (2) investigated the performance of two AI computational algorithms: artificial neural networks (ANNs) and k-nearest neighbors (KNNs) for the evaluation and prediction of the hazard potential levels of US dams; and (3) developed a decision support tool that could be used by the agencies responsible for the management of dams in the US with the capability to predict the hazard potential with good accuracy. The obtained results reflected that the ANN algorithm yielded better accuracy compared to the KNN algorithm. In addition, the conclusions indicated that 19 variables pertaining to dams in the US could affect the hazard potential level of dams. The output is a decision support system that is able to evaluate the hazard potential of dams with a prediction accuracy of 85.70%. This study contributes to the management in engineering’s body of knowledge by devising a data-driven framework that is valuable for dams’ owners and authorities. Ultimately, the developed computational AI algorithm could be used to evaluate and predict the hazard potential level of US dams with good accuracy while minimizing the efforts, time, and costs associated with formal inspection of the dams.
    publisherASCE
    titleEvaluation and Prediction of the Hazard Potential Level of Dam Infrastructures Using Computational Artificial Intelligence Algorithms
    typeJournal Paper
    journal volume36
    journal issue5
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0000810
    page14
    treeJournal of Management in Engineering:;2020:;Volume ( 036 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian