YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Asset Management Framework for Integrated Municipal Infrastructure

    Source: Journal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 004
    Author:
    Soliman Abu-Samra
    ,
    Mahmoud Ahmed
    ,
    Luis Amador
    DOI: 10.1061/(ASCE)IS.1943-555X.0000580
    Publisher: ASCE
    Abstract: Municipalities are experiencing high inefficiency and financial burden imposed by their underperforming aging infrastructure. One-third of Canada’s municipal infrastructure is in fair, poor, and failing condition states, increasing the risk of service disruption and leaving decision-makers with no choice but to undertake immediate intervention. Furthermore, the massive number of intervention activities occurring in cities leads to detrimental social, environmental, and economic impacts on the community. Thus, coordinating municipal infrastructure maintenance is progressively becoming of paramount importance to cope with those tough challenges and reduce service disruptions, repair cost, and time. This research presents an asset management solution to ensure proper expenditure utilization while maintaining infrastructure performance. The framework revolves around three core models: (1) a central database that contains detailed asset inventory for the infrastructure systems; (2) multidimensional computational models to assess the performance of the intervention plan through the duration and cost savings as well as the asset condition state; and (3) a trilevel multiobjective goal optimization model that relies on a combination of metaheuristic rules, goal optimization, and genetic algorithms to plan the corridor interventions across the planning horizon. To demonstrate the functionality of the framework, the system was applied to a 9-km stretch of roads, water, and sewer networks from the city of Montreal. The preliminary results of the coordinated intervention scenario displayed an overall improvement of 8%, broken down to 11% improvement in the network condition state, 7% financial savings, and 6% temporal savings, as opposed to the conventional (uncoordinated) intervention scenario. Furthermore, the coordinated intervention scenario proved to be more efficient in more than 70% of the corridors under study, revealing less number of visits to the same corridor and causing less service disruption to the surrounding community, as opposed to the conventional intervention scenario.
    • Download: (1.762Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Asset Management Framework for Integrated Municipal Infrastructure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4267042
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorSoliman Abu-Samra
    contributor authorMahmoud Ahmed
    contributor authorLuis Amador
    date accessioned2022-01-30T20:44:55Z
    date available2022-01-30T20:44:55Z
    date issued12/1/2020 12:00:00 AM
    identifier other%28ASCE%29IS.1943-555X.0000580.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267042
    description abstractMunicipalities are experiencing high inefficiency and financial burden imposed by their underperforming aging infrastructure. One-third of Canada’s municipal infrastructure is in fair, poor, and failing condition states, increasing the risk of service disruption and leaving decision-makers with no choice but to undertake immediate intervention. Furthermore, the massive number of intervention activities occurring in cities leads to detrimental social, environmental, and economic impacts on the community. Thus, coordinating municipal infrastructure maintenance is progressively becoming of paramount importance to cope with those tough challenges and reduce service disruptions, repair cost, and time. This research presents an asset management solution to ensure proper expenditure utilization while maintaining infrastructure performance. The framework revolves around three core models: (1) a central database that contains detailed asset inventory for the infrastructure systems; (2) multidimensional computational models to assess the performance of the intervention plan through the duration and cost savings as well as the asset condition state; and (3) a trilevel multiobjective goal optimization model that relies on a combination of metaheuristic rules, goal optimization, and genetic algorithms to plan the corridor interventions across the planning horizon. To demonstrate the functionality of the framework, the system was applied to a 9-km stretch of roads, water, and sewer networks from the city of Montreal. The preliminary results of the coordinated intervention scenario displayed an overall improvement of 8%, broken down to 11% improvement in the network condition state, 7% financial savings, and 6% temporal savings, as opposed to the conventional (uncoordinated) intervention scenario. Furthermore, the coordinated intervention scenario proved to be more efficient in more than 70% of the corridors under study, revealing less number of visits to the same corridor and causing less service disruption to the surrounding community, as opposed to the conventional intervention scenario.
    publisherASCE
    titleAsset Management Framework for Integrated Municipal Infrastructure
    typeJournal Paper
    journal volume26
    journal issue4
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000580
    page17
    treeJournal of Infrastructure Systems:;2020:;Volume ( 026 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian